The noradrenergic (NA) system of vertebrates is implicated in learning, memory, arousal, and neuroinflammatory responses, but is difficult to access experimentally. Small and optically transparent, larval zebrafish offer the prospect of exploration of NA structure and function in an intact animal. We made multiple transgenic zebrafish lines using the CRISPR/Cas9 system to insert fluorescent reporters upstream of slc6a2, the norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supporting the potential for targeted LC neuromodulation. Our observations and new transgenic lines set the stage for a deeper understanding of the NA system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196102 | PMC |
http://dx.doi.org/10.1002/cne.24508 | DOI Listing |
Alzheimers Dement
December 2024
Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.
Background: Previous studies have examined the impact of post-traumatic stress disorder and chronic stress on the Locus Coeruleus-Noradrenergic System (LC-NA) revealing significant neurobiological alterations (Aston-Jones & Cohen, 2005; McCall et al., 2015). However, while animal studies have yielded valuable insights regarding the effects of traumatic experiences on the LC-NA system, translation to human models remains relatively underexplored.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFiScience
January 2025
Montreal Centre for Brain, Music and Sound (BRAMS), Montreal, QC, Canada.
People synchronize their movements more easily to rhythms with tempi closer to their preferred motor rates than with faster or slower ones. More efficient coupling at one's preferred rate, compared to faster or slower rates, should be associated with lower cognitive demands and better attentional entrainment, as predicted by dynamical system theories of perception and action. We show that synchronizing one's finger taps to metronomes at tempi outside of their preferred rate evokes larger pupil sizes, a proxy for noradrenergic attention, relative to passively listening.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
Am J Psychiatry
January 2025
Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!