Horizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from time series. The values of the time series are considered as the nodes of the network and are linked to each other if there is no larger value between them, such as they can "see" each other. The network properties reflect the nonlinear dynamics of the time series. For some classes of stochastic processes and for periodic time series, analytical results can be obtained for network-derived quantities such as the degree distribution, the local clustering coefficient distribution, the mean path length, and others. HVGs have the potential to discern between deterministic-chaotic and correlated-stochastic time series. Here, we investigate the sensitivity of the HVG methodology to properties and pre-processing of real-world data, i.e., time series length, the presence of ties, and deseasonalization, using a set of around 150 runoff time series from managed rivers at daily resolution from Brazil with an average length of 65 years. We show that an application of HVGs on real-world time series requires a careful consideration of data pre-processing steps and analysis methodology before robust results and interpretations can be obtained. For example, one recent analysis of the degree distribution of runoff records reported pronounced sub-exponential "long-tailed" behavior of North American rivers, whereas another study of South American rivers showed hyper-exponential "short-tailed" behavior resembling correlated noise. We demonstrate, using the dataset of Brazilian rivers, that these apparently contradictory results can be reconciled by minor differences in data-preprocessing (here: small differences in subtracting the seasonal cycle). Hence, data-preprocessing that is conventional in hydrology ("deseasonalization") changes long-term correlations and the overall runoff dynamics substantially, and we present empirical consequences and extensive simulations to investigate these issues from a HVG methodological perspective. After carefully accounting for these methodological aspects, the HVG analysis reveals that the river runoff dataset shows indeed complex behavior that appears to stem from a superposition of short-term correlated noise and "long-tailed behaviour," i.e., highly connected nodes. Moreover, the construction of a dam along a river tends to increase short-term correlations in runoff series. In summary, the present study illustrates the (often substantial) effects of methodological and data-preprocessing choices for the interpretation of river runoff dynamics in the HVG framework and its general applicability for real-world time series.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5026491 | DOI Listing |
J Med Internet Res
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China.
Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Orthopedics and Trauma Surgery, University Hospital Düsseldorf, Düsseldorf, Germany.
Background: An aging population in combination with more gentle and less stressful surgical procedures leads to an increased number of operations on older patients. This collectively raises novel challenges due to higher age heavily impacting treatment. A major problem, emerging in up to 50% of cases, is perioperative delirium.
View Article and Find Full Text PDFJAMA Surg
January 2025
Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York.
Importance: In the US, traumatic injuries are a leading cause of mortality across all age groups. Patients with severe trauma often require time-sensitive, specialized medical care to reduce mortality; air transport is associated with improved survival in many cases. However, it is unknown whether the provision of and access to air transport are influenced by factors extrinsic to medical needs, such as race or ethnicity.
View Article and Find Full Text PDFPain
January 2025
Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia Adelaide, SA, Australia.
Guideline-based care for chronic pain is challenging to deliver in rural settings. Evaluations of programs that increase access to pain care services in rural areas report variable outcomes. We conducted a realist review to gain a deep understanding of how and why such programs may, or may not, work.
View Article and Find Full Text PDFThe aim of the study is to apply mathematical methods to generate forecasts of the dynamics of random values of the percentage increase in the total number of infected people and the percentage increase in the total number of recovered and deceased patients. The obtained forecasts are used for retrospective forecasting of COVID-19 epidemic process dynamics in St. Petersburg and in Moscow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!