Reconciling the paths of extreme rainfall with those of typhoons remains difficult despite advanced forecasting techniques. We use complex networks defined by a nonlinear synchronization measure termed event synchronization to track extreme rainfall over the Japanese islands. Directed networks objectively record patterns of heavy rain brought by frontal storms and typhoons but mask out contributions of local convective storms. We propose a radial rank method to show that paths of extreme rainfall in the typhoon season (August-November, ASON) follow the overall southwest-northeast motion of typhoons and mean rainfall gradient of Japan. The associated eye-of-the-typhoon tracks deviate notably and may thus distort estimates of heavy typhoon rainfall. We mainly found that the lower spread of rainfall tracks in ASON may enable better hindcasting than for westerly-fed frontal storms in June and July.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5004480 | DOI Listing |
Environ Monit Assess
January 2025
Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, Sligo, F91 YW50, Ireland.
Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CAPA Strategies, Portland, 97242, OR, USA.
This study introduces two refined rainfall anomaly indices-the Modified Rainfall Anomaly Index (MRAI) and the Standardized Rainfall Anomaly Index (SRAI)-to address limitations in the traditional Rainfall Anomaly Index (RAI). The existing RAI struggles to effectively capture extreme wet and dry rainfall conditions and relies on a simplistic formulation. To evaluate these indices on a continental scale, data from the Integrated Multi-Satellite Retrievals for GPM (IMERG) was used for the Conterminous United States (CONUS), enabling scalability to ungaged locations and beyond.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China.
Precipitable water vapor (PWV) is an important indicator to characterize the spatial and temporal variability of water vapor. A high spatial and temporal resolution of atmospheric precipitable water can be obtained using ground-based GNSS, but its inversion accuracy is usually limited by the weighted mean temperature, Tm. For this reason, based on the data of 17 ground-based GNSS stations and water vapor reanalysis products over 2 years in the Hong Kong region, a new model for water vapor inversion without the Tm parameter is established by deep learning in this paper, the research results showed that, compared with the PWV information calculated by the traditional model using Tm parameter, the accuracy of the PWV retrieved by the new model proposed in this paper is higher, and its accuracy index parameters BIAS, MAE, and RMSE are improved by 38% on average.
View Article and Find Full Text PDFLancet Planet Health
January 2025
Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
Background: Weather extremes are predicted to influence pathogen exposure but their effects on specific faecal-oral transmission pathways are not well investigated. We evaluated associations between extreme rain and temperature during different antecedent periods (0-14 days) and Escherichia coli along eight faecal-oral pathways in rural Bangladeshi households.
Methods: We used data from the WASH Benefits Bangladesh cluster-randomised controlled trial (NCT01590095).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!