Background: There is a continued need for improvements in the efficiency of metabolite structure elucidation.
Objective: We propose to take LC Retention Time (RT) into consideration during the process of structure determination.
Methods: Herein, we develop a simple methodology that employs a Chromatographic Hydrophobicity Index (CHI) framework for standardizing LC conditions and introduce and utilize the concept of a predictable CHI change upon Phase 1 biotransformation (CHIbt). Through the analysis of literature examples, we offer a Quantitative Structure-Retention Relationship (QSRR) for several types of biotransformation (especially hydroxylation) using physicochemical properties (clogP, hydrogen bonding).
Results: The CHI system for retention indexing is shown to be practical and simple to implement. A database of CHIbt values has been created from re-incubation of 3 compounds and from analysis of an additional 17 datasets from the literature. Application of this database is illustrated.
Conclusion: In our experience, this simple methodology allows complementing the discovery efforts that saves resources for in-depth characterization using NMR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350196 | PMC |
http://dx.doi.org/10.2174/1872312812666180802093347 | DOI Listing |
BMC Anesthesiol
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang St, Chengdu, 610041, Sichuan, China.
Objective: Early diagnosis of intensive care unit-acquired weakness (ICUAW) is crucial for improving the outcomes of critically ill patients. Hence, this study was designed to identify predisposing factors for ICUAW and establish a predictive model for the early diagnosis of ICUAW.
Methods: This prospective observational multicenter study included septic patients from the comprehensive ICUs of West China Hospital of Sichuan University and 10 other hospitals between September and November 2023.
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFPediatr Res
January 2025
Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.
Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.
Schizophrenia (Heidelb)
January 2025
Suzhou Guangji Hospital, Suzhou, Jiangsu Province; Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province, China.
Numerous observational studies have highlighted associations between mitochondrial dysfunction and schizophrenia (SCZ), yet the causal relationship remains elusive. This study aims to elucidate the causal link between mitochondria-associated proteins and SCZ. We used summary data from a genome-wide association study (GWAS) of 66 mitochondria-associated proteins in 3,301 individuals from Europe, as well as a GWAS on the large, multi-ethnic ancestry of SCZ, involving 76,755 cases and 243,649 controls.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!