Interactions of copper(II)-bipyridine cofactors and thioanisole substrate with human telomeric G-quadruplex DNA were studied by UV/Vis absorption, circular dichroism, and fluorescence quenching titration. Three copper(II)-bipyridine complexes are equivalently anchored to the G-quadruplex scaffold at all five fluorescently labeled sites. Thioanisole interacts with the DNA architecture at both the second loop and 3' terminus in the absence or presence of copper(II)-bipyridine complexes. These nonspecificities in the weak interactions of Cu complexes and thioanisole with G-quadruplex might explain why DNA only affords a modest enantioselectivity in the oxidation of thioanisole. These findings provide insights toward the construction of highly enantioselective DNA-based catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201800393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!