A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system. | LitMetric

Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7 mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS. Graphical abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-018-1872-6DOI Listing

Publication Analysis

Top Keywords

virtual subjects
12
model predictive
8
predictive control
8
diabetic rats
8
artificial pancreas
8
pancreas system
8
bgl
8
bgl control
8
insulin injection
8
control
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!