Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7 mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-018-1872-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!