Respiratory infections of are a major cause of mortality and morbidity for hospitalized patients. Fine particulate matter (FPM) is known to have interactions with some bacterial infection in the respiratory system. In this report, we investigate the effect of different concentration of FPM on attachment and biofilm formation using cell culture systems. were cultured to form mature biofilms on hydroxyapatite-coated peg and the number of bacteria in the biofilms was enumerated. Morphology of biofilm was imaged with scanning electron microscopy and confocal laser scanning microscopy. Bacterial affinity change to the cell membrane was evaluated with attached colony counting and fluorescence microscopy images. Alteration of bacterial surface hydrophobicity and S100A4 protein concentration were explored as mechanisms of adhesion to human cells. There were a concentration-dependent increase of thickness and surface roughness of biofilm mass. adherence to respiratory epithelial cells was increased after FPM treatment. Bacterial surface hydrophobicity and S1000A4 protein concentration were increased with proportionally the dose of FPM in media. FPM in the airway could enhance both the adhesion of to epithelial cells and biofilm formation. Bacterial surface hydrophobicity and human cell plasma membrane injury are associated with binding of on airway epithelial cells and biofilm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057421PMC
http://dx.doi.org/10.1155/2018/6287932DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
bacterial surface
12
surface hydrophobicity
12
epithelial cells
12
fine particulate
8
particulate matter
8
protein concentration
8
cells biofilm
8
biofilm
6
fpm
5

Similar Publications

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging.

View Article and Find Full Text PDF

Nanoarchitectonics for Advancing Bone Graft Technology: Integration of Silver Nanoparticles Against Bacteria and Fungi.

Microorganisms

December 2024

Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil.

Silver nanoparticles have garnered significant attention for their antimicrobial applications. The aim of this study was to develop and characterize a silver nanoparticle-enhanced bone graft and assess its antimicrobial and antibiofilm activities. Bone granules from bovine cancellous femur were impregnated with silver nanoparticles (50 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!