Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fungal β-glucan is a potent immunological stimulator, and that it activates both the innate immune system and adaptive immunity. Curdlan is (1→3)-β-glucan, a linear form of β-glucan with a high molecular weight; it modulates the immune response. However, its role in bone tissue is controversial, and the effects of curdlan on bone tissues are unknown. Toll-like receptors (TLRs) play critical roles in innate immunity, and various ligands for TLRs are thought to regulate the host defense mechanisms against pathogens. TLR2 is known to form heterodimers with TLR6, and the TLR2-TLR6 heterodimer (TLR2/6) recognizes diacylated lipopeptides from Gram-positive bacteria. In the present study, we prepared low molecular-weight curdlan, (1→3)-β-D-glucan, and examined its effects on bone resorption induced by TLR2/6 signaling. In co-cultures of bone marrow cells and osteoblasts, low molecular-weight curdlan suppressed the osteoclast formation induced by TLR2/6 ligand, and attenuated bone resorption in mouse calvarial organ cultures. Curdlan acted on mouse osteoblasts and suppressed the expression of receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), a key molecule for osteoclastogenesis. Curdlan also acted on mouse bone marrow macrophages and suppressed RANKL-dependent osteoclast differentiation from osteoclast precursor cells. The present study indicates that low molecular-weight curdlan attenuated TLR2-induced inflammatory bone resorption. Curdlan, (1→3)-β-glucan may be a natural agent with beneficial effects on bone health in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b18-00057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!