Arsenite is an established human carcinogen that induces cytotoxic and genotoxic effects through poorly defined mechanisms involving the formation of reactive oxygen species (ROS) and deregulated Ca homeostasis. We used variants of the U937 cell line to address the central issue of the mechanism whereby arsenite affects Ca homeostasis. We found that 6-hour exposure to the metalloid (2.5 M), although not associated with an immediate or delayed toxicity, causes a significant increase in the intracellular Ca concentration ([Ca]) through a mechanism characterized by the following components: 1) it was not affected by ROS produced under the same conditions; 2) a small amount of Ca was mobilized from the inositol-1,4,5-trisphosphate receptor (IPR), and this response was not augmented by greater concentrations of the metalloid; 3) large amounts of Ca were instead dose dependently mobilized from the ryanodine receptor (RyR) in response to IPR stimulation; 4) the cells maintained an intact responsiveness to agonist-stimulated Ca mobilization from both channels; 5) arsenite, even at 5-10 M, failed to directly mobilize Ca from the RyR; and 6) arsenite failed to enhance Ca release from the RyR under conditions in which the [Ca] was increased by either RyR agonists or ionophore-stimulated Ca uptake. We therefore conclude that arsenite elevates the [Ca] by directly targeting the IPR and its intraluminal crosstalk with the RyR. This mechanism likely mediates mitochondrial superoxide formation, downstream damage on various biomolecules (including genomic DNA), and mitochondrial dysfunction/apoptosis eventually occurring after longer incubation to, or exposure to greater concentrations of, arsenite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.118.250480 | DOI Listing |
J Environ Sci (China)
July 2025
State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363000, China. Electronic address:
The occurrence of geogenic arsenic (As) in groundwater is a global public health concern. However, there remain large gaps in groundwater As data, making it difficult to identify non-compliant domestic wells, partly due to lack of low-cost methods capable of rapid As analysis. Therefore, the development of high through-put and reliable on-site determination methods for inorganic As is essential.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China.
Elevated concentrations of antimony (Sb) in the environment originating from natural and anthropogenic sources are of global concern due to their high toxicity and mobility. Notably, the formation of thioantimony species (e.g.
View Article and Find Full Text PDFAquat Toxicol
January 2025
IHEM Instituto de Histología y Embriología de Mendoza CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina. Electronic address:
This study examines the kinetics of absorption, distribution and accumulation of arsenite (As III) in the freshwater gastropod Pomacea canaliculata using a short-lived tracer (As III). The toxicokinetic model indicate that the gills play a crucial role in the As III uptake, with uptake rates significantly exceeding those of release back into the aquatic environment. The movement of As III from the gills to the hemolymph has low exchange rate.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:
Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!