The complement pathway is involved in eliminating antigen immune complexes. However, the role of the C3 complement system remains largely unknown in influenza virus M2 extracellular (M2e) domain or hemagglutinin (HA) vaccine-mediated protection after vaccination. Using a C3 knockout (C3 KO) mouse model, we found that complement protein C3 was required for effective induction of immune responses to vaccination with M2e-based or HA-based vaccines, which include isotype class-switched antibodies and effector CD4 and CD8 T cell responses. C3 KO mice after active immunization with cross-protective nonneutralizing M2e-based vaccine were not protected against influenza virus, although low levels of M2e-specific antibodies were protective after passive coadministration with virus in wild-type mice. In contrast, C3 KO mice that were immunized with strain-specific neutralizing HA-based vaccine were protected against homologous virus challenge despite lower levels of HA antibody responses. C3 KO mice showed impaired maintenance of innate immune cells and a defect in innate immune responses upon exposure to antigens. The findings in this study suggest that C3 is required for effective induction of humoral and cellular adaptive immune responses as well as protective immunity after nonneutralizing influenza M2e vaccination. Complement is the well-known innate immune defense system involved in the opsonization and lysis of pathogens but is less studied in establishing adaptive immunity after vaccination. Influenza virus HA-based vaccination confers protection via strain-specific neutralizing antibodies, whereas M2e-based vaccination induces a broad spectrum of protection by immunity against the conserved M2e epitopes. This study revealed the critical roles of C3 complement in inducing humoral and cellular immune responses after immunization with M2e or HA vaccines. C3 was found to be required for protection by M2e-based but not by HA-based active vaccination as well as for maintaining innate antigen-presenting cells. Findings in this study have insight into better understanding the roles of C3 complement in inducing effective innate and adaptive immunity as well as in conferring protection by cross-protective conserved M2e vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158440PMC
http://dx.doi.org/10.1128/JVI.00969-18DOI Listing

Publication Analysis

Top Keywords

immune responses
20
influenza virus
16
humoral cellular
12
innate immune
12
vaccination
9
inducing humoral
8
immune
8
cellular immune
8
vaccination complement
8
required effective
8

Similar Publications

Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury.

View Article and Find Full Text PDF

Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy.

Front Biosci (Landmark Ed)

December 2024

Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).

View Article and Find Full Text PDF

The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype.

Front Biosci (Landmark Ed)

December 2024

Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.

Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.

View Article and Find Full Text PDF

Most cervical cancers are related to the persistent infections of high-risk Human Papillomavirus (HPV) infections. Increasing evidence has witnessed the immunosuppressive effectiveness of HPV in the oncogenesis steps and progression steps. Here we review the immune response in HPV-related cervical malignancies and discuss the crosstalk between HPVs and the host immune response.

View Article and Find Full Text PDF

Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis.

J Inflamm Res

December 2024

Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.

Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!