AI Article Synopsis

  • Asthma is a complex condition divided into atopic (related to allergies) and non-atopic types, and treatments include monoclonal antibodies (MAbs) that target specific interleukins (ILs) involved in airway inflammation.
  • *Currently, only a few MAbs have received FDA approval, while others are still in clinical trials, and small chemical modulators targeting ILs and their receptors are being researched as a potentially more accessible treatment option.
  • *Computational tools are being utilized to identify effective small chemical modulators for atopic asthma, particularly focusing on IL-33, to complement existing MAb therapies and improve treatment options.

Article Abstract

Asthma is a complex, heterogeneous, airway inflammatory disorder broadly classified into atopic (IgE mediated) and non-atopic asthma. Monoclonal Antibodies (MAbs) and small chemical Protein- Protein Interaction Modulators (PPIMs) are targeted against interleukins (ILs), which play a critical role in asthma. Many MAbs are targeted against ILs and IgE. Anti IgE MAb (Omalizumab) and Anti IL- 5 MAbs (Mepolizumab, Reslizumab) have only been approved by FDA. Most of the MAbs including Tracolizumab, Lebrikizumab, Anrukinzumab (Anti IL-13 MAb), and Brodalumab (Anti IL-17 MAb) are in different phases of clinical trials. Pascolizumab (Anti IL-4 MAb), however, has failed. These MAbs are expensive and may render adverse immune response. Thus, small chemical modulators targeting ILs and their receptors (IL-Rs) are being exploited computationally and further validated experimentally. The complex ILs and IL-Rs available in PDB are best suited for these types of studies. A large number of small chemical modulators against Protein-Protein Interactions (PPIs) have been compiled in a few databases like TIMBAL, 2P2I DB and IPPIDB. Small chemical libraries are used for virtual screening to find novel modulators targeting IL-R binding interface on IL. Molecular dynamic simulations have been further used for disruption mechanism and kinetic studies. IL-2/IL-2R was targeted with clinically tested small molecule modulators like SP4206, and IL-2 levels were known to increase in non-atopic asthma. In the absence of experimentally known modulators against atopic asthma, computational tools are being explored. For example, IL-33 is a target for atopic asthma where IL-33 and its receptor complex structure is available in PDB. In summary, small chemical modulators against ILs are a complementary approach to MAbs and computational tools have been used for identifying these modulators for asthma.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026618666180801092839DOI Listing

Publication Analysis

Top Keywords

small chemical
20
chemical modulators
12
asthma
8
non-atopic asthma
8
modulators
8
modulators targeting
8
atopic asthma
8
computational tools
8
small
7
mabs
6

Similar Publications

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.

Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.

View Article and Find Full Text PDF

Amorphous Ni(OH) Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation.

Small

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.

View Article and Find Full Text PDF

Recent Advances on Characterization Techniques for the Composition-Structure-Property Relationships of Solid Electrolyte Interphase.

Small Methods

January 2025

College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.

View Article and Find Full Text PDF

Anisotropically Epitaxial P-N Heterostructures Actuating Efficient Z-Scheme Photocatalytic Water Splitting.

Small

January 2025

Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!