High resolution, high efficiency liquid scintillator capillary array for gamma imaging.

Rev Sci Instrum

State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China.

Published: July 2018

We fabricated a liquid scintillator capillary array (LSCA) for gamma imaging with the aim of developing a one-dimensional detector system utilizing a streak camera for high temporal and spatial resolution pulsed gamma radiation detection. The detector's performance was studied in a simulation and via an experiment. The maximum efficiency of the LSCA's emission was at a wavelength of 420 nm. To establish a high fidelity representation of the detector's edge spread function and modulation transfer function (MTF), a slanted edge algorithm was introduced to calculate the edge spread function of the discrete sampling array's image screen. The simulation results showed that the spatial resolution of the LSCA was better for 14 MeV neutrons than for 1.25 MeV gamma radiation. The experimental results show that in comparison with a 6-mm-thick LaBr image plate, the LSCA had a higher temporal and spatial resolution when used as a gamma detector. The spatial resolution was 1.1 lp/mm (MTF = 0.1) for the LSCA. In addition, when an ultra-violet streak camera was coupled with the LSCA, it had a comparable sensitivity to that of a 6-mm-thick LaBr image plate.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5026131DOI Listing

Publication Analysis

Top Keywords

spatial resolution
16
liquid scintillator
8
scintillator capillary
8
capillary array
8
gamma imaging
8
streak camera
8
temporal spatial
8
gamma radiation
8
edge spread
8
spread function
8

Similar Publications

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Purpose Of Review: Our purpose was to discuss the advantages and disadvantages of various noninvasive imaging modalities in the evaluation of cardiovascular disease (CVD) in patients with autoimmune rheumatic diseases (ARDs). The detailed knowledge of imaging modalities will facilitate the diagnosis and follow up of CVD in ARDs.

Recent Findings: Autoimmune Rheumatic Diseases (ARDs) are characterized by alterations in immunoregulatory system of the body.

View Article and Find Full Text PDF

MALDI-MSI: A potential game changer in forensic sciences.

Forensic Sci Med Pathol

January 2025

School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.

Matrix-assisted laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) is an analytical technique used for the spatial mapping of drugs, explosives, and organic samples, making it a game-changer in Forensic examination. It detects a wide range of biomolecules in their native state without specific tags, antibodies, labels, and dyes. This review aims to highlight the advancement of MALDI-MSI over time and its impact on Forensic Science due to high-resolution molecular imaging.

View Article and Find Full Text PDF

Recent Advances on Characterization Techniques for the Composition-Structure-Property Relationships of Solid Electrolyte Interphase.

Small Methods

January 2025

College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.

View Article and Find Full Text PDF

The tertiary lymphoid structure (TLS) is recognized as a potential prognosis factor for breast cancer and is strongly associated with response to immunotherapy. Inducing TLS neogenesis can enhance the immunogenicity of tumors and improve the efficacy of immunotherapy. However, our understanding of TLS associated region at the single-cell level remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!