Silica nanoparticles induce abnormal mitosis and apoptosis via PKC-δ mediated negative signaling pathway in GC-2 cells of mice.

Chemosphere

Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. Electronic address:

Published: October 2018

The potential health hazards of silica nanoparticles (SiNPs) have attracted more and more attentions. Researches had shown that SiNPs could damage seminiferous epithelium and reduce the quantity and quality of sperms, however the specific mechanism of male reproductive toxicity induced by SiNPs still unclear. So we designed to investigate the mechanism of SiNPs on male mice using spermatocyte lines (GC-2spd cells) after exposure to SiNPs (6.25, 12.5, 25 and 50 μg/mL) for 24 h. The present study showed that SiNPs entered GC-2 cells and mainly localized in the cytoplasm and lysosome. And internalized SiNPs damaged mitochondria structures. As a result, SiNPs not only induced a dose-dependent reduction in cell viability, but also increased the LDH release and apoptosis rate in GC-2 cells. Furthermore, SiNPs induced DNA strand breaks and abnormal mitosis, and arrested GC-2 cells at the G0/G1 phase. Besides, SiNPs could simultaneously activate both PKC-mediated negative signaling pathway (PKC-δ/p53/p21cip1) and positive signaling pathway (PKC-α/MAPK). However, the lower expressions of cyclin E and cyclin-dependent kinases 2 (CDK2) indicated that PKC-δ signaling pathway played a major role in cell cycle process. These results suggested internalized SiNPs in GC-2 cells induced DNA strand breaks and activated PKC-mediated signaling pathway. While the activation of PKC-δ signaling pathway led to cell cycle arrest and apoptosis, thereby resulting in abnormal mitosis. The present study may provide a new evidence to elucidate the toxic mechanisms of male reproductive system, and will be beneficial for safety assessment of SiNPs products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.05.178DOI Listing

Publication Analysis

Top Keywords

signaling pathway
24
abnormal mitosis
12
sinps
12
silica nanoparticles
8
negative signaling
8
male reproductive
8
internalized sinps
8
sinps induced
8
induced dna
8
dna strand
8

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.

View Article and Find Full Text PDF

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!