Long-term effects of untreated wastewater on soil bacterial communities.

Sci Total Environ

Environmental Research Institute, Shandong University, Jinan 250100, China.

Published: January 2019

For 46 years (1957-2002), irrigation with wastewater has increased the amount of heavy metal and organic contaminants in soils and altered bacterial communities in Shenyang, northeastern China. There has been characterization of the different heavy metal and petroleum contaminants in two types of land uses (cornfields and paddy fields). The Nemerow composite indices of heavy metal contaminants have been higher in cornfields (1.17-4.73) than those in paddy fields (0.57-1.64). Molecular-based techniques and biochemical-based techniques were used to analyze soil microbial diversity in our study. The metabolic activity of soil microbe communities was higher in paddy sites than that in cornfields. Organic pollutants such as saturated and polycyclic aromatic hydrocarbons have significantly affected soil bacterial compositions. Heavy metals differed in how they disturbed the microbial communities. Arsenic (As) and lead (Pb) shifted the community composition and decreased microbial diversity; copper (Cu) reduced bacterial abundance in soil; and cadmium (Cd) and chromium (Cr) lowered the metabolic capabilities of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.07.223DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
soil bacterial
8
bacterial communities
8
paddy fields
8
microbial diversity
8
soil
5
long-term effects
4
effects untreated
4
untreated wastewater
4
wastewater soil
4

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!