Rationale: Liquid atmospheric pressure matrix-assisted laser desorption/ionisation (AP-MALDI) has been shown to enable the production of electrospray ionisation (ESI)-like multiply charged analyte ions with little sample consumption and long-lasting, robust ion yield for sensitive analysis by mass spectrometry (MS). Previous reports have focused on positive ion production. Here, we report an initial optimisation of liquid AP-MALDI for ESI-like negative ion production and its application to the analysis of peptides/proteins, DNA and lipids.
Methods: The instrumentation employed for this study is identical to that of earlier liquid AP-MALDI MS studies for positive analyte ion production with a simple non-commercial AP ion source that is attached to a Waters Synapt G2-Si mass spectrometer and incorporates a heated ion transfer tube. The preparation of liquid MALDI matrices is similar to positive ion mode analysis but has been adjusted for negative ion mode by changing the chromophore to 3-aminoquinoline and 9-aminoacridine for further improvements.
Results: For DNA, liquid AP-MALDI MS analysis benefited from switching to 9-aminoacridine-based MALDI samples and the negative ion mode, increasing the number of charges by up to a factor of 2 and the analyte ion signal intensities by more than 10-fold compared with the positive ion mode. The limit of detection was recorded at around 10 fmol for ATGCAT. For lipids, negative ion mode analysis provided a fully orthogonal set of detected lipids.
Conclusions: Negative ion mode is a sensitive alternative to positive ion mode in liquid AP-MALDI MS analysis. In particular, the analysis of lipids and DNA benefited from the complementarity of the detected lipid species and the vastly greater DNA ion signal intensities in negative ion mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757204 | PMC |
http://dx.doi.org/10.1002/rcm.8246 | DOI Listing |
Acta Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
The behavior of water in concentrated ionic solutions, including supersaturated conditions, is crucial for numerous material and energy conversion processes and fundamental research. All electrolytes whether they "structure-make" or "structure-break" the water structure lead to slower water motion. This study investigates the structure and dynamics of aqueous NaCl solutions across a wide range of concentrations.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan.
, a slow-growing nontuberculous mycobacterium, causes Buruli ulcer, a neglected tropical disease. Distinguishing from related species, including , poses challenges with respect to making accurate identifications. In this study, we developed a rapid and simple identification method based on mycobacterial lipid profiles and used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the lipid profiles of ( = 35) and ( = 19) isolates.
View Article and Find Full Text PDFFront Robot AI
January 2025
School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom.
Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!