The application of pulsed electromagnetic fields (PEMFs) in the prevention and treatment of osteoporosis has long been an area of interest. However, the clinical application of PEMFs remains limited because of the poor understanding of the PEMF action mechanism. Here, we report that PEMFs promote bone formation by activating soluble adenylyl cyclase (sAC), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) signaling pathways. First, it was found that 50 Hz 0.6 millitesla (mT) PEMFs promoted osteogenic differentiation of rat calvarial osteoblasts (ROBs), and that PEMFs activated cAMP-PKA-CREB signaling by increasing intracellular cAMP levels, facilitating phosphorylation of PKA and CREB, and inducing nuclear translocation of phosphorylated (p)-CREB. Blocking the signaling by adenylate cyclase (AC) and PKA inhibitors both abolished the osteogenic effect of PEMFs. Second, expression of sAC isoform was found to be increased significantly by PEMF treatment. Blocking sAC using sAC-specific inhibitor KH7 dramatically inhibited the osteogenic differentiation of ROBs. Finally, the peak bone mass of growing rats was significantly increased after 2 months of PEMF treatment with 90 min/day. The serum cAMP content, p-PKA, and p-CREB as well as the sAC protein expression levels were all increased significantly in femurs of treated rats. The current study indicated that PEMFs promote bone formation in vitro and in vivo by activating sAC-cAMP-PKA-CREB signaling pathway of osteoblasts directly or indirectly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.27098 | DOI Listing |
The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.
View Article and Find Full Text PDFCells
January 2025
Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFAm J Hematol
January 2025
Keros Therapeutics, Lexington, Massachusetts, USA.
Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Periodontology, Narsinhbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, Gujarat, India.
Aim: This study aims to evaluate the impact of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on pain, swelling, trismus, soft tissue healing and bone regeneration following mandibular third molar extraction.
Material And Methods: A systematic review was conducted from a period of January 2014 to June 2024 using PRISMA guidelines. The search strategy included databases such as Scopus, PubMed, Google Scholar, and Cochrane Central Register of Controlled Trials, using key terms related to "PRF", "PRP", oral surgery, and third molars.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!