A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering the targets of retroviral protease inhibitors in Plasmodium berghei. | LitMetric

Retroviral protease inhibitors (RPIs) such as lopinavir (LP) and saquinavir (SQ) are active against Plasmodium parasites. However, the exact molecular target(s) for these RPIs in the Plasmodium parasites remains poorly understood. We hypothesised that LP and SQ suppress parasite growth through inhibition of aspartyl proteases. Using reverse genetics approach, we embarked on separately generating knockout (KO) parasite lines lacking Plasmepsin 4 (PM4), PM7, PM8, or DNA damage-inducible protein 1 (Ddi1) in the rodent malaria parasite Plasmodium berghei ANKA. We then tested the suppressive profiles of the LP/Ritonavir (LP/RT) and SQ/RT as well as antimalarials; Amodiaquine (AQ) and Piperaquine (PQ) against the KO parasites in the standard 4-day suppressive test. The Ddi1 gene proved refractory to deletion suggesting that the gene is essential for the growth of the asexual blood stage parasites. Our results revealed that deletion of PM4 significantly reduces normal parasite growth rate phenotype (P = 0.003). Unlike PM4_KO parasites which were less susceptible to LP and SQ (P = 0.036, P = 0.030), the suppressive profiles for PM7_KO and PM8_KO parasites were comparable to those for the WT parasites. This finding suggests a potential role of PM4 in the LP and SQ action. On further analysis, modelling and molecular docking studies revealed that both LP and SQ displayed high binding affinities (-6.3 kcal/mol to -10.3 kcal/mol) towards the Plasmodium aspartyl proteases. We concluded that PM4 plays a vital role in assuring asexual stage parasite fitness and might be mediating LP and SQ action. The essential nature of the Ddi1 gene warrants further studies to evaluate its role in the parasite asexual blood stage growth as well as a possible target for the RPIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070271PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201556PLOS

Publication Analysis

Top Keywords

retroviral protease
8
protease inhibitors
8
plasmodium berghei
8
plasmodium parasites
8
parasite growth
8
aspartyl proteases
8
suppressive profiles
8
ddi1 gene
8
asexual blood
8
blood stage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!