Understanding the relationship between biodiversity and ecosystem functioning has so far resulted from two main approaches: the analysis of species' functional traits, and the analysis of species interaction networks. Here we propose a third approach, based on the association between combinations of species or of functional groups, which we term assembly motifs, and observed ecosystem functioning. Each assembly motif describes a biotic environment in which species interactions have particular effects on a given ecosystem function. Clustering species in functional groups generates a classification of ecosystems based on their assembly motif. We evaluate the quality of each species clustering, that is its ability to predict an ecosystem function, by the coefficient of determination of the ecosystem classification. An iterative process then enables identifying the species clustering in functional groups that best accounts for the functioning of the observed ecosystems. We test this approach using experimental and simulated datasets. We show that our combinatorial analysis makes it possible to identify the combinations of functional groups of species whose interactions govern ecosystem functioning without any a priori knowledge of the species themselves or their interactions. Our combinatorial approach reproduces the associative learning of empirical ecologists, and proves to be powerful and parsimonious.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070253 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201135 | PLOS |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Rep
January 2025
Le Verseau Inc., Tokyo, 156-0051, Japan.
Scientific research on forest therapy's preventive medical and mental health effects has advanced, but the need for clear evidence for practical applications remains. We conducted an unblinded randomized controlled trial involving healthy men aged 40-70 to compare the physiological and psychological effects of forest and urban walking. Eighty-four participants were randomly assigned to either the forest or urban group, with 78 completing 90-min walks and analysis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!