A taxonomic revision of the genus Puccinia on Lycieae, a tribe of Solanaceae.

Mycologia

a Plant Ecological Genetics, Herbaria Z+ZT, ETH Zurich , Universitätstrasse 16, 8092 Zurich , Switzerland.

Published: January 2019

We present a taxonomic and phylogenetic study of Puccinia species (rust fungi) infecting tribe Lycieae (Solanaceae), with focus on the New World taxa. Phylogenetic analyses using nuclear (nuc) rDNA 5.8S-ITS2 (ITS2) and mitochondrial (mt) cytochrome oxidase subunit 3 (CO3) show that Puccinia species occurring on Lyciae are grouped in two major lineages, one New World and one Old World. We assessed the value of morphological traits and geographic range as important features for discriminating lineages. The morphology of teliospore pedicels and rust geographic ranges explained the relationships within this Puccinia species group. Four Puccinia species are recognized on Lycieae in the New World lineage and four in the Old World lineage. Puccinia tumidipes from North America is resurrected and P. dimidipes described as new from South America. In addition, P. spinulosa from Madagascar is reduced to a synonym of P. engleriana. Descriptions and a dichotomous key are presented for the accepted species.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00275514.2018.1478538DOI Listing

Publication Analysis

Top Keywords

puccinia species
16
puccinia
6
species
5
taxonomic revision
4
revision genus
4
genus puccinia
4
puccinia lycieae
4
lycieae tribe
4
tribe solanaceae
4
solanaceae taxonomic
4

Similar Publications

Re-Examination Characterization and Screening of Stripe Rust Resistance Gene of Wheat Gene Family Based on the Transcriptome in Xinchun 32.

Int J Mol Sci

January 2025

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.

Pathogenesis-related protein-1 (PR1) encodes a water-soluble protein produced in plants after pathogen infection or abiotic stimulation. It plays a crucial role in plant-induced resistance by attacking pathogens, degrading cell wall macromolecules and pathogen toxins, and inhibiting the binding of viral coat proteins to plant receptor molecules. Compared to model plants, the mechanism of action of PR1 in wheat remains underexplored.

View Article and Find Full Text PDF

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .

View Article and Find Full Text PDF

Stripe rust, induced by f. sp. (), is one of the most destructive fungal diseases of wheat worldwide.

View Article and Find Full Text PDF

Chrysanthemum white rust (CWR), caused by Puccinia horiana Heen., is a serious disease of chrysanthemum worldwide. This disease reduces the quality and yield of Chrysanthemum morifolium, leading to significant losses for chrysanthemum growers and industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!