The matricellular protein SPARC (secreted proteome acidic and rich in cysteine) is known to bind collagens and regulate fibrillogenesis. Cleavage of SPARC at a single peptide bond, increases the affinity for collagens up to 20-fold. To investigate if this specific cleavage has pathological relevance in fibrotic disorders, we developed a competitive ELISA targeting the generated neo-epitope on the released fragment and quantified it in serum from patients with lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and healthy subjects. Furthermore, the ability of SPARC to protect fibrillar collagens from proteolytic degradation was investigated in vitro, potentially adding a new collagen chaperone function to SPARC. The fragment was significantly elevated in lung cancer patients when compared to healthy subjects measured in a discovery cohort (p = 0.0005) and a validation cohort (p < 0.0001). No significant difference was observed for IPF and COPD patients compared to healthy subjects. When recombinant SPARC was incubated with type I or type III collagen and matrix metalloproteinase-9, collagen degradation was completely inhibited. Together, these data suggest that cleavage of SPARC at a specific site, which modulates collagen binding, is a physiological mechanism increased during pathogenesis of lung cancer. Furthermore, inhibition of fibrillar collagen degradation by SPARC adds a new chaperone function to SPARC which may play additional roles in the contribution to increased collagen deposition leading to a pro-fibrotic and tumorigenic environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300351PMC
http://dx.doi.org/10.1080/15384047.2018.1480887DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
pathological relevance
8
collagen chaperone
8
chaperone function
8
function sparc
8
healthy subjects
8
sparc
5
fragment sparc
4
sparc reflecting
4
reflecting increased
4

Similar Publications

Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.

View Article and Find Full Text PDF

Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.

View Article and Find Full Text PDF

Parathyroid carcinoma (PC) is one of the rarest malignant neoplasms of the human endocrine system, with a prevalence of approximately 0.005% of all oncological diseases. Despite its indolent course, PC generally relapses in about 40%-60% of cases.

View Article and Find Full Text PDF

Application of nanomaterials in precision treatment of lung cancer.

iScience

January 2025

Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.

Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies.

View Article and Find Full Text PDF

Background: Recent patient studies have linked higher immune cell doses with worse quality of life and survival. For thoracic radiotherapy, heart dose is a major contributor to the effective dose to immune cells (EDIC).

Purpose: This study investigates heart and immune cell doses for plans optimized using a cardiac-sparing knowledge-based planning (KBP) model and the impact of carefully crafted beam geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!