Carbon nitride materials are of great interest for photocatalytic water splitting. Herein, we report results from first-principles simulations of the specific electron- and proton-transfer processes that are involved in the photochemical oxidation of liquid water with heptazine-based molecular photocatalysts. The heptazine chromophore and the solvent molecules have been described strictly at the same level of electronic structure theory. We demonstrate the critical role of solvent molecules for the absorption properties of the chromophore and the overall photocatalytic cycle. A simple model is developed to describe the photochemical water oxidation mechanism. Our results reveal that heptazine possesses energy levels that are suitable for the water oxidation reaction. We suggest design principles for molecular photocatalysts which can be used as descriptors in future experimental and computational screening studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b02026 | DOI Listing |
Small
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).
View Article and Find Full Text PDFSmall
January 2025
Institute for Sustainable Energy and Resources, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China.
Alkaline water (HO) electrolysis is currently a commercialized green hydrogen (H) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRuFeCoNi high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRuFeCoNi HEAs with the HEAs and cobalt rutheniate interface (HEAs-CoRuO) exhibits excellent alkaline HER performance, requiring just 11.
View Article and Find Full Text PDFBehav Neurol
January 2025
Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Plant Physiology Sector, State University of Norte Fluminense, Center for Sciences and Agricultural Technologies (CCTA), Avenida Alberto Lamego, 2000, 28015-620, Campos dos Goytacazes, RJ, Brazil.
The aim was to investigate the morphological, photosynthetic, and hydraulic physiological characteristics of different genotypes of under controlled cultivation conditions. Growth, conductance, and hydraulic conductivity of the root system of 16 genotypes were evaluated in Experiment 1 (November 2013). In Experiment 2 (December 2014), in addition to the previous characteristics, gas exchange, photochemical efficiency, leaf water potential, and leaf hydraulic conductivity were investigated in five genotypes.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Chengde Bijiashan Ecological Agriculture Technology Development Co., Ltd., 067000 Chengde, Hebei, China.
Application of hyperspectral reflectance technology to track changes in photosynthetic activity in () remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!