One of the fundamental problems in biophysics is whether the protein medium at room temperature can be properly treated as a fluid dielectric or whether its dynamics is determined by a highly ordered molecular structure resembling the properties of crystalline and amorphous solids. Here, we measured the recombination between reduced A and the oxidized chlorophyll special pair P over a wide temperature range using preparations of photosystem I from the cyanobacterium Synechococcus sp. PCC 7002 depleted of the iron-sulfur clusters. We found that the dielectric properties of the protein matrix in early electron transfer reactions of photosystem I resemble the behavior of solids that require an implicit treatment of electron-phonon coupling even at ambient temperatures. The quantum effects of electron-phonon coupling in proteins could account for a variety of phenomena, such as the weak sensitivity of electron transfer in pigment-protein complexes to changing environmental conditions including temperature, driving force, polarity, and chemical composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b03906 | DOI Listing |
Nano Lett
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China.
Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs monolayer under different biaxial tensile strains based on the state-of-the-art electron-phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs monolayers.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, Texas 75080, United States.
Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.
Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!