Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O -H redox cycling was applied to mimic the lifetime changes in model Pt In nanocatalysts, while monitoring the induced changes by in situ quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt In segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The in situ time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175175 | PMC |
http://dx.doi.org/10.1002/anie.201806447 | DOI Listing |
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation.
View Article and Find Full Text PDFCryopreservation is a widely used technique to preserve biological samples for extended periods of time at low temperatures. Even though it is known to have significant effects on cell viability, its effect on their metabolism remains unexplored. Studying how cryopreservation influences the metabolism of cells is important to guarantee the reliability of samples transported between sites for analysis.
View Article and Find Full Text PDFPRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFRespirology
January 2025
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia.
Background And Objective: The impact of lifetime body mass index (BMI) trajectories on adult lung function abnormalities has not been investigated previously. We investigated associations of BMI trajectories from childhood to mid-adulthood with lung function deficits and COPD in mid-adulthood.
Methods: Five BMI trajectories (n = 4194) from age 5 to 43 were identified in the Tasmanian Longitudinal Health Study.
Micromachines (Basel)
December 2024
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 4, 18000 Niš, Serbia.
This study investigates the effects of negative bias temperature (NBT) stress and irradiation on the threshold voltage () of p-channel VDMOS transistors, focusing on degradation, recovery after each type of stress, and operational behavior under varying conditions. Shifts in (Δ) were analyzed under different stress orders, showing distinct influence mechanisms, including defects creation and their removal and electrochemical reactions. Recovery data after each type of stress indicated ongoing electrochemical processes, influencing subsequent stress responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!