Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143280PMC
http://dx.doi.org/10.1021/acs.jpcb.8b05221DOI Listing

Publication Analysis

Top Keywords

elastin-like peptides
16
coacervation transition
12
infrared spectroscopy
8
structural dynamics
8
solvent environment
8
elastin-like peptide
8
elastin-like
6
peptides
6
dynamics
5
temperature-induced collapse
4

Similar Publications

Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials.

Drug Deliv

December 2025

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.

View Article and Find Full Text PDF

Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.

View Article and Find Full Text PDF

Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks.

ACS Appl Mater Interfaces

January 2025

dsm-firmenich Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands.

The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins.

View Article and Find Full Text PDF

Feedback-induced phase separation of hollow condensates to create biomimetic membraneless compartments.

J Mater Chem B

December 2024

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

Intracellular macromolecules have the ability to form membraneless compartments, such as vacuoles and hollow condensates, through liquid-liquid phase separation (LLPS) in order to adapt to changes in their environment. The development of artificial non-homogeneous compartments, such as multiphase hollow or multicavity condensates, has gained significant attention due to their potential to uncover the mechanisms underlying the formation of artificial condensates and biomolecular condensates. However, the complexity of design and construction has hindered progress, particularly in creating dynamic non-homogeneous compartments.

View Article and Find Full Text PDF

Functional decoration of elastin-like polypeptides-based nanoparticles with a modular assembly via isopeptide bond formation.

Biotechnol Lett

November 2024

Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.

Temperature-responsive elastin-like polypeptides (ELPs) exhibit a low critical solution temperature-type phase transition and offer potential as useful materials for the construction of nanoparticles. Herein, we developed a novel decoration method for ELP-based nanoparticles via isopeptide bond formation with the SnoopTag/SnoopCatcher system that is not affected by the heating process required for particle formation. A mixture of a fusion protein of ELP and poly(aspartic acid) (poly(D)), known as ELP-poly(D), and ELP-poly(D) fused with SnoopCatcher (ELP-poly(D)-SnC) formed protein nanoparticles as a result of the temperature responsiveness of ELP, with the resultant nanoparticles displaying the SnoopCatcher binding domain on their surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!