Adulterating edible oil with copper chlorophyll derivatives (E141i) has made a substantial impact on the edible oil industry and food safety. This study demonstrates an efficient and reliable screening method to directly identify the color adulteration by the aid of a simple photobleaching pretreatment using a 365 nm ultraviolet-light-emitting diode working at a photon flux density of 480 mmol m s for 24 min. The content of copper chlorophyll [predominantly Cu-pyropheophytin a (Cu-py a)] can be calculated by A, A, and A with satisfactory spike recovery [97.9-103.6%; six kinds of edible oils spiked with 1 ppm of Cu-py a; n = 3 for each kind of oil; relative standard deviation (RSD) < 5%], linearity ( R = 0.9961 when spiking 0.1-10 ppm of Cu-py a into soybean oil standard; n = 3 for each concentration; RSD < 5%), and reproducibility (RSD < 5% for spiking 1 ppm of Cu-py a into soybean oil standard; n = 3 over 3 days). The detection limit (S/N > 5) was 0.05 ppm. The analytical results of 50 commercially available oil samples were verified by the official high-performance liquid chromatography method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b02170 | DOI Listing |
Photodiagnosis Photodyn Ther
December 2024
Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany. Electronic address:
Pseudomonas aeruginosa is a hard-to-treat human pathogen for which new antimicrobial agents are urgently needed. P. aeruginosa is known for forming biofilms, a complex aggregate of bacteria embedded in a self-generated protective matrix that enhance its resistance to antibiotics and the immune system.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA.
Pest Manag Sci
November 2024
College of Life Sciences, Nankai University, Tianjin, China.
Polymers (Basel)
October 2024
Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
Catheter-associated urinary tract infections (CAUTIs) present significant health risks in medical settings, necessitating innovative solutions to prevent bacterial colonization on catheter surfaces. This study introduces a novel polymeric coating with dual antifouling and light-activated bactericidal properties to enhance the bactericidal efficacy of urinary catheters. The coatings were synthesized using a one-step process involving pyrogallol chemistry to deposit a copolymer composed of zwitterionic sulfobetaine for antifouling and sodium copper chlorophyllin, a photosensitizer that generates reactive oxygen species under light exposure to effectively kill bacteria.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark; Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, 04544 East Boothbay, ME, USA.
It has been demonstrated that LPMO reactions can be driven by light, using the photosynthetic pigment chlorophyllin to achieve efficient oxidative degradation of cellulose. However, the effect of chlorophyllin on cellulases remains unclear. This study discovered that chlorophyllin does not affect the hydrolytic activity of cellulases under dark conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!