AI Article Synopsis

  • Dye sensitization is significantly enhancing the upconversion luminescence (UCL) of lanthanide-doped upconversion nanoparticles (UCNPs), but the interactions between dyes and UCNPs are not well understood.
  • Researchers studied a specific UCNP model to explore the energy processes involved, including the first experimental observation of energy back transfer (EBT).
  • The study highlights how EBT affects the optimal dye-to-UCNP ratio and provides insights for designing more effective dye-sensitized nanosystems for both UCL and downconversion luminescence.

Article Abstract

Dye sensitization is becoming a new dimension to highly improve the upconversion luminescence (UCL) of lanthanide-doped upconversion nanoparticles (UCNPs). However, there is still a lack of general understanding of the dye-UCNPs interactions, especially the confused large mismatch between the inputs and outputs. By taking dye-sensitized NaYF:Yb/Er@NaYF:Nd UCNPs as a model system, we not only revealed the in-depth energy-dissipative process for dye-sensitized UCL but also confirmed the first ever experimental observation of the energy back transfer (EBT) in the dye-sensitized UCL. Furthermore, this energy-dissipative EBT restricted the optimal ratio of dyes to UCNP. By unearthing all of the energy loss behind the EBT, energy transfer, and energy migration processes, this paper sheds light on the further design of effective dye-sensitized nanosystems for UCL or even downconversion luminescence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b01931DOI Listing

Publication Analysis

Top Keywords

upconversion luminescence
8
dye-sensitized ucl
8
energy transfer
8
dye-sensitized
5
ultrastrong absorption
4
absorption meets
4
meets ultraweak
4
ultraweak absorption
4
absorption unraveling
4
unraveling energy-dissipative
4

Similar Publications

Manipulating energy migration in nanoparticles toward tunable photochromic upconversion.

Nat Commun

December 2024

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.

Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.

View Article and Find Full Text PDF

Multimodal bioimaging is beneficial for clinical diagnosis and research due to the provision of comprehensive diagnostic information. However, the design of multifunctional bio-probes aggregating multiple bioimaging functions is greatly challenging. In this study, a multifunctional bio-probe based on lanthanide-based nanomaterials Sr2GdF7: Yb3+/Er3+/Tm3+ (abbreviated as SGF) was developed for in vivo multimodal imaging by co-adopting apropos lanthanides and tuning their molar ratio.

View Article and Find Full Text PDF

Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs.

View Article and Find Full Text PDF

Generating Strong Circularly Polarized Luminescence from Self-assembled Films of Chiral Selenium Nanoparticles and Upconversion Nanoparticles.

Angew Chem Int Ed Engl

December 2024

Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.

Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.

View Article and Find Full Text PDF

Thermal Enhanced Near-Infrared Upconversion Luminescence in YMoO:Yb/Nd with Uniaxial Negative Thermal Expansion.

Inorg Chem

December 2024

School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China.

Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, YMoO:Yb,Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!