Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organometallic reaction mechanisms are assumed to be appropriately described by minimum energy pathways mapped out by density functional theory calculations. For the two-step oxidative addition/reductive elimination mechanism for C-H activation of methane and benzene by cationic Cp*(PMe)Ir(CH), we report quasiclassical direct dynamics simulations that demonstrate the Ir-H intermediate is bypassed in a significant amount of productive trajectories initiated from vibrationally averaged velocity distributions of oxidative addition transition states. This organometallic dynamical mechanism is akin to the σ-bond metathesis pathway but occurs on the oxidative addition/reductive elimination energy surface and blurs the line between two- and one-step mechanisms. Quasiclassical trajectories also reveal that the momentum of crossing the reductive elimination structure always induces complete alkane and arene dissociation from the Ir metal center, skipping weak C-H σ and π coordination complexes. This suggests that these weak coordination complexes after reductive elimination are not necessarily on the reaction pathway and likely result from a solvent cage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b05238 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!