Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arsenic toxicity is the most commonly experienced challenge of rice plants due to irrigation with arsenic-polluted groundwater and their cultivation in water logging environment which poses threat to human health, particularly in Bangladesh and West Bengal (India). In the present study, hydroponically grown eight rice cultivars, viz., Bhutmuri, Kumargore, Binni, Vijaya, Tulsibhog, Badshabhog, Pusa basmati, and Swarnadhan, were screened for arsenic tolerance by using physiological and molecular parameters. Treatment with 25 μM, 50 μM, and 75 μM arsenate resulted in dosage-based retardation in growth and water content in all the tested cultivars due to accumulation of total arsenic along with the enhanced activity of arsenate reductase with more severe effects exhibited in cvs. Swarnadhan, Pusa basmati, Badshabhog, and Tulsibhog. Arsenic sensitivity of rice cultivars was evaluated in terms of oxidative stress markers generation, antioxidant enzyme activities, and level of genotoxicity. Under arsenate-challenged conditions, the levels of oxidative stress markers, viz., HO, MDA, and proline, and activities of antioxidant enzymes, viz., SOD and CAT, along with the level of genotoxicity analyzed by RAPD profiling were altered in variable levels in all tested rice cultivars and showed a significant alteration in band patterns in arsenate-treated seedlings of cvs. Swarnadhan, Pusa basmati, Badshabhog, and Tulsibhog in terms of appearance of new bands and disappearance of normal bands that were presented in untreated seedlings led to reduction in genomic template stability due to their high susceptibility to arsenic toxicity. Cultivar- and dose-dependent alteration of parameters tested including the rate of As accumulation showed that cvs. Kumargore, Binni, and Vijaya, specially Bhutmuri, were characterized as arsenate tolerant and could be cultivated in arsenic-prone areas to minimize level of toxicity and potential health hazards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-018-1290-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!