Autism spectrum disorder (ASD) is a developmental disorder which is currently only diagnosed through behavioral testing. Impaired folate-dependent one carbon metabolism (FOCM) and transsulfuration (TS) pathways have been implicated in ASD, and recently a study involving multivariate analysis based upon Fisher Discriminant Analysis returned very promising results for predicting an ASD diagnosis. This article takes another step toward the goal of developing a biochemical diagnostic for ASD by comparing five classification algorithms on existing data of FOCM/TS metabolites, and also validating the classification results with new data from an ASD cohort. The comparison results indicate a high sensitivity and specificity for the original data set and up to a 88% correct classification of the ASD cohort at an expected 5% misclassification rate for typically-developing controls. These results form the foundation for the development of a biochemical test for ASD which promises to aid diagnosis of ASD and provide biochemical understanding of the disease, applicable to at least a subset of the ASD population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063877 | PMC |
http://dx.doi.org/10.1002/btm2.10095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!