A paper spray mass spectrometry (PS-MS) method has been developed for the rapid quantification of benzoic acid (BA) and vitamin C (VC) in beverages. Using BA-d5 as an internal standard (IS) to analyze BA and VC, the calibration curves ranged from 0.3 to 100 μg/mL for BA and 1 to 100 μg/mL for VC, the linearity was 0.9996 for BA and 0.9973 for VC. The limits of detection (LODs) and limits of quantitation (LOQs) were 0.1 μg/mL and 0.3 μg/mL for BA, 0.3 μg/mL and 1 μg/mL for VC, respectively. The recovery ranged from 91.1 to 106.7% for BA, 92.6 to 108.2% for VC. Compared with HPLC, there is no substantial difference in the quantification of BA and VC in samples, the accuracy was 95.7-102.2%, and the run time is far less than that of the HPLC method. The results indicated that PS-MS is a rapid, environmentally friendly and high-throughput method for the quantification of BA and VC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.06.103 | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, P. R. China.
Dipole molecules (DMs) show great potential in defect passivation for printable mesoscopic perovskite solar cells (p-MPSCs), although the crystallization process of p-MPSCs is more intricate and challenging than planar perovskite solar cells. In this work, a series of non-volatile multifunctional DMs are employed as additives to enhance the crystallization of perovskites and improve both the power conversion efficiency (PCE) and stability of the devices. This enhancement is achieved by regulating the side groups of benzoic acid molecules with the electron-donating groups such as guanidine (─NH─C(═NH)─NH), amino (─NH) and formamidine (─C(═NH)─NH).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, China. Electronic address:
AAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong. Electronic address:
Porous graphitized carbon (PGC)-supported CoFeO bimetallic catalysts (CoFeO/PGC) were prepared by a hydrothermal method using Fe(NO)·9HO and Co(NO)·6HO as precursors and were used to activate peroxymonosulfate (PMS) for the degradation of chlorobenzene (CB). Under the conditions of CoFeO/PGC catalysts and PMS concentrations of 0.1 g/L and 5 mM, respectively, in a wide range of pH (5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!