Background: The KINARM robot produces a granular dataset of participant performance metrics associated with proprioceptive, motor, visuospatial, and executive function. This comprehensive battery includes several behavioral tasks that each generate 9 to 20 metrics of performance. Therefore, the entire battery of tasks generates well over 100 metrics per participant, which can make clinical interpretation challenging. Therefore, we sought to reduce these multivariate data by applying principal component analysis (PCA) to increase interpretability while minimizing information loss.

Methods: Healthy right-hand dominant participants were assessed using a bilateral KINARM end-point robot. Subjects (Ns = 101-208) were assessed using 6 behavioral tasks and automated software generated 9 to 20 metrics related to the spatial and temporal aspects of subject performance. Data from these metrics were converted to Z-scores prior to PCA. The number of components was determined from scree plots and parallel analysis, with interpretability considered as a qualitative criterion. Rotation type (orthogonal vs oblique) was decided on a per task basis.

Results: The KINARM performance data, per task, was substantially reduced (range 67-79%), while still accounting for a large amount of variance (range 70-82%). The number of KINARM parameters reduced to 3 components for 5 out of 6 tasks and to 5 components for the sixth task. Many components were comprised of KINARM parameters with high loadings and only some cross loadings were observed, which demonstrates a strong separation of components.

Conclusions: Complex participant data produced by the KINARM robot can be reduced into a small number of interpretable components by using PCA. Future applications of PCA may offer potential insight into specific patterns of sensorimotor impairment among patient populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069537PMC
http://dx.doi.org/10.1186/s12984-018-0416-5DOI Listing

Publication Analysis

Top Keywords

principal component
8
component analysis
8
kinarm robot
8
behavioral tasks
8
performance data
8
kinarm parameters
8
kinarm
6
metrics
5
components
5
analysis reduce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!