Background: c-Kit + lung stem cells have been described in the human healthy lung. Their potential relation with smoking and/or chronic obstructive pulmonary disease (COPD) is unknown.
Methods: We characterized and compared c-Kit+ cells in lung tissue of 12 never smokers (NS), 15 smokers with normal spirometry (S) and 44 COPD patients who required lung resectional surgery. Flow cytometry (FACS) was used to characterize c-Kit+ cells in fresh lung tissue disaggregates, and immunofluorescence (IF) for further characterization and to determine their location in OCT- embedded lung tissue.
Results: We identified 4 c-Kit+ cell populations, with similar proportions in NS, S and COPD: (1) By FACS, c-Kit/CD45+ cells (4.03 ± 2.97% (NS), 3.96 ± 5.30% (S), and 5.20 ± 3.44% (COPD)). By IF, these cells were tryptase+ (hence, mast cells) and located around the airways; (2) By IF, c-Kit/CD45+/triptase- (0.07 ± 0.06 (NS), 0.03 ± 0.02 (S), and 0.06 ± 0.07 (COPD) cells/field), which likely correspond to innate lymphoid cells; (3) By FACS, c-Kit/CD45-/CD34+ (0.95 ± 0.84% (NS), 1.14 ± 0.94% (S) and 0.95 ± 1.38% (COPD)). By IF these cells were c-Kit/CD45-/CD31+, suggesting an endothelial lineage, and were predominantly located in the alveolar wall; and, (4) by FACS, an infrequent c-Kit/CD45-/CD34- population (0.09 ± 0.14% (NS), 0.08 ± 0.09% (S) and 0.08 ± 0.11% (COPD)) compatible with a putative lung stem cell population. Yet, IF failed to detect them and we could not isolate or grow them, thus questioning the existence of c-Kit+ lung stem-cells.
Conclusions: The adult human lung contains a mixture of c-Kit+ cells, unlikely to be lung stem cells, which are independent of smoking status and/or presence of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066937 | PMC |
http://dx.doi.org/10.1186/s12890-018-0688-3 | DOI Listing |
Drug Metab Rev
December 2024
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Several studies indicate various pharmacological and therapeutic effects of peroxisome proliferator-activated receptors (PPARs) in different disorders. The current review describes the influences of PPARs on respiratory, allergic, and immunologic diseases. Various databases, including PubMed, Science Direct, and Scopus, were searched regarding the effect of PPARs on respiratory and allergic disorders from 1990 to 2024.
View Article and Find Full Text PDFEur J Heart Fail
December 2024
Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
Aims: Iron deficiency (ID) is highly prevalent in patients with heart failure (HF) and associated with morbidity and poor prognosis, but pathophysiological mechanisms are unknown. We aimed to identify novel biological pathways affected by ID.
Methods And Results: We studied 881 patients with HF from the BIOSTAT-CHF cohort.
ACS Appl Mater Interfaces
December 2024
Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362400, China.
Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.
View Article and Find Full Text PDFBiol Direct
December 2024
Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Alveolar macrophages (AMs) is critical to exacerbate acute lung injury (ALI) induced by lipopolysaccharide (LPS) via inhibiting inflammation, which could by shifted by mesenchymal stem cell-derived exosomes (MSC-exos). But the underlying rationale is not fully clarified. Our study aimed to analyze the significance of itaconic acid (ITA) in mediating the protective effects of MSC-exos on LPS-induced ALI.
View Article and Find Full Text PDFFront Immunol
December 2024
State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China.
Background: To determine the role of N-methyladenosine (mA) modification in the tumor immune microenvironment (TIME), as well as their association with lung adenocarcinoma (LUAD).
Methods: Consensus clustering was performed to identify the subgroups with distinct immune or mA modification patterns using profiles from TCGA. A risk score model was constructed using least absolute shrinkage and selection operator regression and validated in two independent cohorts and LUAD tissue microarrays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!