Fluidized beds are used by pharmaceutical manufacturers for multi-particulate drug coating. They provide effective mass and heat transfer; however, unit optimization can be difficult due to the multivariate nature of a fluidized bed system. This research explores the use of passive acoustic emissions monitoring as a method to improve temperature management during pellet coating. A piezoelectric microphone was placed inside the exhaust of a conical top spray fluidized bed. Spherical 1000 μm pellets were coated while recording acoustic emissions. Fluidization air temperature was adjusted between trials as a controlled variable to determine if pellet drying rate could be extracted from the data. During each trial, pellets became damp as the coating solution was applied. Drying stages were used to remove moisture whereby pellet fluidization continued without spraying. The moving standard deviation of the acoustic emissions increased by approximately 40 mV during each 2-min coating stage. The emissions then decreased during drying. This decrease was at a rate proportional to pellet drying independently measured at each controlled temperature. The overall coating-drying emissions profile was similar for trials using either sugar or Acryl-EZE® coating solutions. Passive acoustic emissions monitoring is non-invasive and provides reliable coating and drying information during fluidized bed operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2018.06.062 | DOI Listing |
Microorganisms
December 2024
Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea.
Yeast formulations such as dry yeast are essential for supplying microbial starters to the alcoholic beverage industry. In Korea, the expensive freeze-drying method is used to manufacture brewer's dry yeast, and therefore an economical process such as fluidized bed drying is needed. In the dry yeast manufacturing process, the medium and drying conditions are key factors that determine its quality and manufacturing cost.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, Maryland, 21201, USA.
Dosage forms containing Ivermectin (IVER) and Praziquantel (PRAZ) are important combination drug products in animal health. Understanding the relationship between products with differing in vitro release characteristics and bioequivalence could facilitate generics. The goal of this study was to create granulations for each active ingredient, with similar release mechanisms, but substantially different in vitro release rates, and then compressing these granulations into tablets with differing release rates.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; KRKA, d. d., 8501 Novo Mesto, Slovenia. Electronic address:
One of the main concerns with formulations containing amorphous solid dispersions (ASDs) is their physical stability. Stability can be compromised if a formulation contains any residual crystallinity of an active pharmaceutical ingredient (API) that could act as seeds for further crystallisation. This study presents four methods for crystalline amlodipine maleate quantification in ASD, which were developed using one Raman and three NIR process analysers.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:
Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.
View Article and Find Full Text PDFWaste Manag
January 2025
Energy and Sustainability Department (EES), Federal University of Santa Catarina (UFSC), 88905-120, Araranguá, SC, Brazil. Electronic address:
Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!