A rare example of SC-SC triggered by Cu heterogeneous oxidation was demonstrated in a Fe(II)-based MOF {[Fe(L)(HO)]·3HO} (1), which occurred a slow conversion into an oxidized MOF 2 ({[Fe(L)(HO)]·3(OH)} ) with retention of single crystallinity. The Fe → Fe progress of the reaction oxidation was proved by single crystal XRD, PXRD, XPS, Fe Mössbauer spectroscopy, and UV-vis. We used 1 and 2 as catalysts to catalyze the tandem Nazarov cyclization, and the results show that acylation products were only harvested when 1 was a catalyst, while the oxidized transformer 2 lead mainly to the formation of cyclization products under identical conditions. Through the test of different substrates, 2 can be a good heterogeneous catalyst candidate for the formation of cyclopentenone[ b] benzenes. This work provides a new way to design efficient and hard-synthesized heterogeneous catalyst materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b01421 | DOI Listing |
Nat Commun
December 2024
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.
View Article and Find Full Text PDFACS Appl Nano Mater
January 2024
Department of Chemistry, University of Central Florida, Orlando, Florida 32816 (USA).
Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:
Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Advanced oxidation technology based on peroxides is widely regarded as an efficient method for treating emerging contaminants. However, the precise mechanism by which layered double hydroxides (LDHs) enhance oxidant activation requires further investigation. In this study, a spherical Fe-Mn LDH (S-FML) with improved crystallinity using a simple hydrothermal method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China.
The exploration and rational design of high-performance, durable, and non-precious-metal bifunctional oxygen electrocatalysts are highly desired for the large-scale application of overall water splitting. Herein, an effective and straightforward coupling approach was developed to fabricate high-performance bifunctional OER/HER electrocatalysts based on core-shell nanostructure comprising a Ni/NiN core and a NiFe(OH) shell. The as-prepared Ni/NiN@NiFe(OH)-4 catalyst exhibited low overpotentials of 57 and 243 mV at 10 mA cm for the HER and OER in 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!