We study the energy and creep velocity of magnetic domain walls in perpendicularly magnetised Pt/Co/Ir thin films under strain. We find that the enhancement of domain wall creep velocity under strain from piezoelectric transducers is largest in films with the thinnest Co layers (0.56 nm), in which the strain causes the smallest relative change in perpendicular magnetic anisotropy and the largest relative change in domain wall creep velocity. We show how domain wall energy is predictive of the sensitivity of domain wall creep velocity to changes in strain, and thus provide a route to designing magnetic thin film systems for optimum strain control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aad3a2 | DOI Listing |
Soft Matter
January 2025
Department of Physics, Tohoku University, Sendai 980-8578, Japan.
When nematic liquid crystal elastomers (LCEs) crosslinked at their isotropic phase are quenched to the nematic phase, they show polydomain patterns, in which nematic microdomains with different orientations self-organize into a three-dimensional mosaic with characteristic correlation patterns. The orientational correlation length of the domain, which is usually in the micrometer range, is believed to emerge as a result of a competition between liquid crystalline ordering and frozen network inhomogeneity. Although polydomain patterns show potentials as the basic platform for optical, memory, and mechanical devices, no study exists regarding how they are modulated by experimentally accessible parameters.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
Introduction: Despite its therapeutic advantages, postmastectomy radiotherapy (PMRT) increases the risk of complications and often leads to poor cosmesis in women undergoing breast reconstruction. Preoperative radiotherapy followed by skin-sparing mastectomy and deep inferior epigastric perforator (DIEP) flap reconstruction is technically feasible, with low rates of surgical complications and good short-term oncological outcomes. Further evaluation in a randomised trial comparing preoperative radiotherapy versus conventional PMRT in breast reconstruction is required to assess both oncological and patient-reported outcomes (PROs).
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.
View Article and Find Full Text PDF() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!