Ammonolysis of Cobalt Molybdenum Oxides - In Situ XRD Study.

Inorg Chem

West Pomeranian University of Technology, Szczecin , Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Pułaskiego 10 , 70-322 Szczecin , Poland.

Published: August 2018

The reduction of cobalt molybdenum oxide under an ammonia atmosphere resulting in the formation of ternary interstitial nitride CoMoN was studied. Intermediate phases were identified by an in situ powder X-ray diffraction using a reaction chamber. It was supplemented by a thermogravimetric analysis of the process. The presence of intermediate phases, CoMoO, CoMoO, MoN, metallic cobalt, and CoMoN, was observed. A synthesis route of CoMoN by an ammonolysis method was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b00685DOI Listing

Publication Analysis

Top Keywords

cobalt molybdenum
8
intermediate phases
8
ammonolysis cobalt
4
molybdenum oxides
4
oxides situ
4
situ xrd
4
xrd study
4
study reduction
4
reduction cobalt
4
molybdenum oxide
4

Similar Publications

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF
Article Synopsis
  • Cobalt oxide (CoO) is an attractive electrode material for supercapacitors due to its affordability, natural abundance, non-toxicity, and high capacitance.
  • Researchers developed a binder-less molybdenum doped CoO (Mo@CoO) integrated electrode using a simple electric discharge corrosion (EDC) method, which allows for direct synthesis without templates or additives.
  • The study found that the Mo@CoO based supercapacitor with a specific discharge pulse width achieved a significantly higher capacitance and quick charge/discharge capabilities, showcasing the EDC method's potential for fabricating efficient electrodes for energy storage and sensing applications.
View Article and Find Full Text PDF

As a graphene-like layered material, molybdenum disulfide (MoS), has attracted increasing attentions for its promising application in electrocatalysis. Whereas MoS still suffers from the sluggish reaction kinetics in oxygen evolution reaction (OER) due to the low density of active sites in most exposed planes. In this work, high density of active sites on MoS basal planes has been obtained by synthesizing mesoporous MoS with Co doping and sulfur vacancies (V).

View Article and Find Full Text PDF

: Limited evidence links urinary metal exposure to osteoporosis in broad populations, prompting this study to cover this knowledge gap using supervised and unsupervised approaches. : This study included 15,923 participants from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020. Urinary concentrations of nine metals-barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony (Sb), thallium (Tl), and tungsten (Tu)-were measured using inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!