A vast majority of existing sub-millimeter-scale sensors have a planar, 2D geometry as a result of conventional top-down lithographic procedures. However, 2D sensors often suffer from restricted sensing capability, allowing only partial measurements of 3D quantities. Here, nano/microscale sensors with different geometric (1D, 2D, and 3D) configurations are reviewed to introduce their advantages and limitations when sensing changes in quantities in 3D space. This Review categorizes sensors based on their geometric configuration and sensing capabilities. Among the sensors reviewed here, the 3D configuration sensors defined on polyhedral structures are especially advantageous when sensing spatially distributed 3D quantities. The nano- and microscale vertex configuration forming polyhedral structures enable full 3D spatial sensing due to orthogonally aligned sensing elements. Particularly, the cubic configuration leveraged in 3D sensors offers an array of diverse applications in the field of biosensing for micro-organisms and proteins, optical metamaterials for invisibility cloaking, 3D imaging, and low-power remote sensing of position and angular momentum for use in microbots. Here, various 3D sensors are compared to assess the advantages of their geometry and its impact on sensing mechanisms. 3D biosensors in nature are also explored to provide vital clues for the development of novel 3D sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201801145 | DOI Listing |
Background: Intrabdominal pressure (IAP) is an important parameter. Elevated IAP can reduce visceral perfusion, lead to intraabdominal hypertension, and result in life-threatening abdominal compartment syndrome. While ingestible capsular devices have been used for various abdominal diagnoses, their application in continuous IAP monitoring remains unproven.
View Article and Find Full Text PDFCell Death Dis
January 2025
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
Lighting systems account for a significant proportion of energy consumption in buildings. Therefore, energy conservation within these systems can greatly enhance overall building energy efficiency. This study proposes a control strategy for LED lamps by adjusting lighting intensity and improving the performance of electric luminaires.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.
Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:
Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!