A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring metaldehyde in surface waters in the UK using two monitoring approaches. | LitMetric

Measuring metaldehyde in surface waters in the UK using two monitoring approaches.

Environ Sci Process Impacts

School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK.

Published: August 2018

Metaldehyde is a molluscicide and the active ingredient in formulated slug pellets used for the protection of crops. Due to its mobility in the environment it is frequently found in river catchments, often at concentrations exceeding the EU Drinking Water Directive limit of 100 ng L-1 for a single pesticide. This presents a major problem for water companies in the UK where such waters are abstracted for production of potable drinking water supplies. Therefore, it is important to understand the sources, transport and fate of this emerging pollutant of concern in the aquatic environment. We monitored metaldehyde in two contrasting river catchments (River Dee (8 sites) and River Thames (6 sites)) over a twelve month period that coincided with the agricultural application period of the molluscicide. Spot samples of water were collected typically weekly or fortnightly. Chemcatcher® passive samplers were deployed consecutively every two weeks. At the River Dee, there was little variability in the concentrations of metaldehyde (<10-110 ng L-1) measured in the spot samples of water. The Chemcatcher® gave similar time-weighted average concentrations which were higher following increased rain fall events. At the River Thames, concentrations of metaldehyde varied more widely (<9-4200 ng L-1) with several samples exceeding 100 ng L-1. Generally these concentrations were reflected in the time-weighted average concentrations obtained using the Chemcatcher®. Both monitoring techniques gave complementary data for identifying input sources, and in the development of catchment management plans and environmental remediation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8em00180dDOI Listing

Publication Analysis

Top Keywords

river catchments
8
drinking water
8
river dee
8
river
5
measuring metaldehyde
4
metaldehyde surface
4
surface waters
4
waters monitoring
4
monitoring approaches
4
approaches metaldehyde
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!