Background: Current petroleum-derived fuels such as gasoline (C-C) and diesel (C-C) are complex mixtures of hydrocarbons with different chain lengths and chemical structures. Isoprenoids are hydrocarbon-based compounds with different carbon chain lengths and diverse chemical structures, similar to petroleum. Thus, isoprenoid alcohols such as isopentenol (C), geraniol (C), and farnesol (C) have been considered to be ideal biofuel candidates. NudB, a native phosphatase of , is reported to dephosphorylate isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) into isopentenol. However, no attention has been paid to its promiscuous activity toward longer chain length (C-C) prenyl diphosphates.
Results: In this study, the promiscuous activity of NudB toward geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) was applied for the production of isoprenoid alcohol mixtures, including isopentenol, geraniol, and farnesol, and their derivatives. was engineered to produce a mixture of C and C alcohols by overexpressing NudB (dihydroneopterin triphosphate diphosphohydrolase) and IspA (FPP synthase) along with a heterologous MVA pathway, which resulted in a total of up to 1652 mg/L mixture of C and C alcohols and their derivatives. The production was further increased to 2027 mg/L by overexpression of another endogenous phosphatase, AphA, in addition to NudB. Production of DMAPP- and FPP-derived alcohols and their derivatives was significantly increased with an increase in the gene dosage of , encoding IPP isomerase (IDI), indicating a potential modulation of the composition of the alcohols mixture according to the expression level of IDI. When IspA was replaced with its mutant IspA*, generating GPP in the production strain, a total of 1418 mg/L of the isoprenoid mixture was obtained containing C alcohols as a main component.
Conclusions: The promiscuous activity of NudB was newly identified and successfully used for production of isoprenoid-based alcohol mixtures, which are suitable as next-generation biofuels or commodity chemicals. This is the first successful report on high-titer production of an isoprenoid alcohol-based mixture. The engineering approaches can provide a valuable platform for production of other isoprenoid mixtures via a proportional modulation of IPP, DMAPP, GPP, and FPP syntheses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058358 | PMC |
http://dx.doi.org/10.1186/s13068-018-1210-0 | DOI Listing |
Physiol Plant
January 2025
Laboratory of Plant Physiology, Universidad de Extremadura, Badajoz, Spain.
Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit.
View Article and Find Full Text PDFJ Burn Care Res
January 2025
Department of Surgery, Microbiology and Immunology, Physiology, and Alcohol and Drug Abuse Center of Excellence, LSUHSC.
Adipose-derived stem cells (ADSCs) have an important role in the modulation of burned tissue repair through the release of paracrine factors that stimulate the wound healing response. In this study, we tested the hypothesis that smoking status alters the profile of paracrine factors secreted from ADSCs isolated from damaged adipose tissue. Adipose tissue was collected from adult patients (N=8) with severe burn injuries (>20% total body surface area) at the index operation.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.
View Article and Find Full Text PDFNat Commun
January 2025
Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Sphingosine-1-phosphate (S1P) is a signaling lysolipid critical to heart development, immunity, and hearing. Accordingly, mutations in the S1P transporter SPNS2 are associated with reduced white cell count and hearing defects. SPNS2 also exports the S1P-mimicking FTY720-P (Fingolimod) and thereby is central to the pharmacokinetics of this drug when treating multiple sclerosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.
In the management of pregnancy, ritodrine has been used to prevent preterm birth, and magnesium sulfate (MgSO) has been used to prevent preterm labor and preeclampsia. Neonates born to mothers receiving these medications occasionally show an increase in serum potassium concentration. Recently, an elevated risk of neonatal hyperkalemia has been reported, particularly when ritodrine and MgSO are co-administered; however, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!