Measuring the volume of bird eggs is a very important task for the poultry industry and ornithological research due to the high revenue generated by the industry. In this paper, we describe a prototype of a new metrological system comprising a 3D range camera, Microsoft Kinect (Version 2) and a point cloud post-processing algorithm for the estimation of the egg volume. The system calculates the egg volume directly from the egg shape parameters estimated from the least-squares method in which the point clouds of eggs captured by the Kinect are fitted to novel geometric models of an egg in a 3D space. Using the models, the shape parameters of an egg are estimated along with the egg's position and orientation simultaneously under the least-squares criterion. Four sets of experiments were performed to verify the functionality and the performance of the system, while volumes estimated from the conventional water displacement method and the point cloud captured by a survey-grade laser scanner serve as references. The results suggest that the method is straightforward, feasible and reliable with an average egg volume estimation accuracy 93.3% when compared to the reference volumes. As a prototype, the software part of the system was implemented in a post-processing mode. However, as the proposed processing techniques is computationally efficient, the prototype can be readily transformed into a real-time egg volume system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111257 | PMC |
http://dx.doi.org/10.3390/s18082454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!