Accurate Collaborative Globally-Referenced Digital Mapping with Standard GNSS.

Sensors (Basel)

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA.

Published: July 2018

Exchange of location and sensor data among connected and automated vehicles will demand accurate global referencing of the digital maps currently being developed to aid positioning for automated driving. This paper explores the limit of such maps' globally-referenced position accuracy when the mapping agents are equipped with low-cost Global Navigation Satellite System (GNSS) receivers performing standard code-phase-based navigation, and presents a globally-referenced electro-optical simultaneous localization and mapping pipeline, called GEOSLAM, designed to achieve this limit. The key accuracy-limiting factor is shown to be the asymptotic average of the error sources that impair standard GNSS positioning. Asymptotic statistics of each GNSS error source are analyzed through both simulation and empirical data to show that sub-50-cm accurate digital mapping is feasible in the horizontal plane after multiple mapping sessions with standard GNSS, but larger biases persist in the vertical direction. GEOSLAM achieves this accuracy by (i) incorporating standard GNSS position estimates in the visual SLAM framework, (ii) merging digital maps from multiple mapping sessions, and (iii) jointly optimizing structure and motion with respect to time-separated GNSS measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111300PMC
http://dx.doi.org/10.3390/s18082452DOI Listing

Publication Analysis

Top Keywords

standard gnss
16
digital mapping
8
digital maps
8
multiple mapping
8
mapping sessions
8
gnss
7
mapping
6
standard
5
accurate collaborative
4
collaborative globally-referenced
4

Similar Publications

Analysis of GNSS-RTK Monitoring Background Noise Characteristics Based on Stability Tests.

Sensors (Basel)

January 2025

China Railway Construction Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China.

GNSS-RTK offers numerous advantages and broad prospects in structural dynamic monitoring in civil engineering. However, in practical applications, GNSS-RTK accuracy is susceptible to the monitoring environments, causing actual monitoring accuracy to fall below its calibrated accuracy. This study investigates the monitoring accuracy and spectral characteristics of GNSS-RTK based on stability tests under different environments related to reflection and obstruction conditions (i.

View Article and Find Full Text PDF

Accurately predicting satellite clock deviation is crucial for improving real-time location accuracy in a GPS navigation system. Therefore, to ensure high levels of real-time positioning accuracy, it is essential to address the challenge of enhancing satellite clock deviation prediction when high-precision clock data is unavailable. Given the high frequency, sensitivity, and variability of space-borne GPS satellite atomic clocks, it is important to consider the periodic variations of satellite clock bias (SCB) in addition to the inherent properties of GPS satellite clocks such as frequency deviation, frequency drift, and frequency drift rate to improve SCB prediction accuracy and gain a better understanding of its characteristics.

View Article and Find Full Text PDF

Event-Based Visual/Inertial Odometry for UAV Indoor Navigation.

Sensors (Basel)

December 2024

SOTI Aerospace, SOTI Inc., Mississauga, ON L5N 8L9, Canada.

Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency.

View Article and Find Full Text PDF

To eliminate the noise interference caused by continuous external environmental disturbances on the rotor signals of a maglev gyroscope, this study proposes a noise reduction method that integrates an adaptive particle swarm optimization variational modal decomposition algorithm with a strategy for error compensation of the trend term in reconstructed signals, significantly improving the azimuth measurement accuracy of the gyroscope torque sensor. The optimal parameters for the variational modal decomposition algorithm were determined using the adaptive particle swarm optimization algorithm, allowing for the accurate decomposition of noisy rotor signals. Additionally, using multi-scale permutation entropy as a criterion for discriminant, the signal components were filtered and summed to obtain the denoised reconstructed signal.

View Article and Find Full Text PDF

This paper focuses on the retrieval of refractivity fields from GNSS measurements by means of least-squares collocation. Collocation adjustment estimates parameters that relate delays and refractivity without relying on a grid. It contains functional and stochastic models that define the characteristics of the retrieved refractivity fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!