Sodium Copper Chlorophyllin Catalyzed Chemoselective Oxidation of Benzylic Alcohols and Diarylmethanes in Water.

Molecules

Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China.

Published: July 2018

We report the highly efficient and chemoselective oxidation of benzylic alcohols catalyzed by sodium copper chlorophyllin in water, producing corresponding arylcarbonyl compounds. Importantly, the catalytic system exhibits a wide substrate scope and high functional group tolerance. Moreover, secondary alcohols and even diarylmethanes were smoothly oxidized to the desired aryl ketones with excellent yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222594PMC
http://dx.doi.org/10.3390/molecules23081883DOI Listing

Publication Analysis

Top Keywords

sodium copper
8
copper chlorophyllin
8
chemoselective oxidation
8
oxidation benzylic
8
benzylic alcohols
8
alcohols diarylmethanes
8
chlorophyllin catalyzed
4
catalyzed chemoselective
4
diarylmethanes water
4
water report
4

Similar Publications

This study investigates the nutritional and anti-nutrient profiles of extrudates produced from seven formulations of pearl millet and Bambara groundnut flour in seven different ratios: 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20, with 100% pearl millet and 100% Bambara groundnut extrudates used as controls. The extrudates were processed using a twin screw extruder and analyzed for their nutritional and anti-nutritional properties. The findings revealed a rising pattern in the content of fiber, moisture, protein, ash and fat as the substitution of Bambara groundnut increased in the extrudate.

View Article and Find Full Text PDF

Objectives: The high incidence of coronary artery heart disease (CHD) poses a significant burden and challenge to public health systems globally. Effective prevention and early diagnosis of CHD have become key strategies to alleviate this burden. This study aims to explore the application of advanced machine learning techniques to enhance the accuracy of early screening and risk assessment for CHD.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state polymer electrolytes (SPEs) are gaining attention for sodium metal batteries (SMBs) due to their flexibility and lower interfacial resistance, but they struggle with sodium ion conductivity and unstable interfaces.
  • A novel composite electrolyte called PPNM is created by integrating a 3D copper metal organic framework (Cu-MOF) with polyacrylonitrile (PAN) fibers and polyethylene oxide (PEO), enhancing ionic conductivity and sodium ion movement.
  • The improved stability and performance of the PPNM electrolyte lead to strong cycling results for Na3V2(PO4)3@C/PPNM/Na full cells, making it a promising strategy for advancing solid-state SMB technology.
View Article and Find Full Text PDF

Are metal-based antibacterial gels a potential alternative for disinfection in contemporary endodontics?

Evid Based Dent

January 2025

Doctoral Research Fellow and Specialty Trainee (Endodontics), School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.

Aims: This study aimed to assess the effectiveness of a novel antimicrobial gel, containing copper and silver nanoparticles, for use in root canal disinfection.

Methods: Copper and silver-based gels were created in-house, using a support network of biocompatible polymers, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG). Six experimental groups were created, three containing silver ions and three copper ions, where the PVA, PVP and PEG ratios were also adjusted in each group to test the gel's physical state.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans. However, much of the world's human population is deficient in this element, which has become a public health problem. This study aimed to evaluate whether applying severe water stress to wheat plants ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!