Cylindrical graphite microbial fuel cell (MFC) configuration designed by eliminating distinct casing and membrane was evaluated for bioelectrogenesis and treatment of real-field wastewaters. Both petroleum refinery wastewater (PRW) and Labanah whey wastewater (LW) were used as substrates, and investigated for electricity generation and organic removal under batch mode operation. PRW showed higher bioelectricity generation (current and power generation of 3.35mA and 1.12mW at 100Ω) compared to LW (3.2mA and 1.02mW). On the contrary, higher substrate degradation efficiency was achieved using LW (72.76%) compared to PRW (45.06%). Superior function of MFC operation in terms of volumetric power density (PRW, 28.27W/m; LW, 23.23W/m) suggesting the feasibility of using these wastewaters for bioelectricity generation. Large sources of wastewater that generating in the Middle-East countries have potential to produce renewable energy from the treatment, which helps for the sustainable wastewater management and simultaneous renewable energy production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.09.174DOI Listing

Publication Analysis

Top Keywords

cylindrical graphite
8
microbial fuel
8
fuel cell
8
bioelectricity generation
8
renewable energy
8
generation
5
graphite based
4
based microbial
4
cell treatment
4
treatment industrial
4

Similar Publications

Fast-chargeable lithium-ion batteries by μ-Si anode-tailored full-cell design.

Proc Natl Acad Sci U S A

January 2025

School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Silicon (Si) anodes have long been recognized to significantly improve the energy density and fast-charging capability of lithium-ion batteries (LIBs). However, the implementation of these anodes in commercial LIB cells has progressed incrementally due to the immense volume change of Si across its full state-of-charge (SOC) range. Here, we report an anode-tailored full-cell design (ATFD), which incorporates micrometer-sized silicon (μ-Si) alone, for operation over a limited, prespecified SOC range identified as 30-70%.

View Article and Find Full Text PDF

A Cylindrical Lens Spectrometer with Parallel Detection for Reflection Electron Energy Loss Spectroscopy.

Microsc Microanal

November 2024

Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong, Daejeon 34113, Republic of Korea.

Reflection electron energy loss spectroscopy (REELS) has played a pivotal role in allowing researchers to explore the characteristics of various bulk materials. This study presents results for the low-loss region of REELS with a new cylindrical lens spectrometer integrated into a low-voltage scanning electron microscope. The operational principles and implementation of the spectrometer are explained through comparisons between electron optical simulations and experimental results.

View Article and Find Full Text PDF

Carbon-based electrodes have recently been most widely used in P-MFC due to their desirable properties such as biocompatibility, chemical stability, affordable price, corrosion resistance, and ease of regeneration. In general, carbon-based electrodes, particularly graphite, are produced using a complex process based on petroleum derivatives at very high temperatures. This study aims to produce electrodes from bio-pitch and charcoal powder as an alternative to graphite electrodes.

View Article and Find Full Text PDF

Design of a PIT biosensor based on plasmonic-graphene-black phosphorous hybrid for hypercholesterolemia detection.

Sci Rep

October 2024

Department of Electrical Engineering, Faculty of Engineering, Alzahra university, Tehran, Iran.

Cardiovascular diseases are the primary and fundamental reasons of people death around the world. Precise, fast responding, compact and integrable biosensors are considered as the most important prevention or treatment devices. In this work, remarkable absorbers based on graphene-plasmonic-black phosphorous hybrid structures are proposed.

View Article and Find Full Text PDF

Microporous carbon confined nano silicon composites (Si/m-C) are considered to be the best anode materials for high-energy-density lithium-ion batteries compared with the other Si-based materials such as SiO, due to high initial Coulombic efficiency (ICE) and capacity, as well as good cycling stability. However, there is a lack of multilevel comprehensive evaluation of Si/m-C, which poses potential risks to the commercial application. Herein, combined with quantitative titration, mechanical characterization, and bulk/interface evolution analysis, a systematic evolution of commercialized Si/m-C from the particle level to the cylindrical cell level is conducted, revealing the decay mechanism and proposing corresponding solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!