Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162181 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2018.06.039 | DOI Listing |
J Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Medicine - Endocrinology, Baylor College of Medicine, Houston, Texas, USA.
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFBackground: The goal of this study was to examine the effects of spinal cord stimulation (SCS) on muscle activity during walking after lower-limb amputation. Amputation results in a loss of sensory feedback and alterations in gait biomechanics, including co-contractions of antagonist muscles about the knee and ankle, and reduced pelvic obliquity range-of-motion and pelvic drop. SCS can restore sensation in the missing limb, but its effects on muscle activation and gait biomechanics have not been studied in people with lower-limb amputation.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!