Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACD/MPV) is a rare and lethal disorder mainly involving the vascular development of the lungs. Since its first description, significant achievements in research have led to a better understanding of the underlying molecular mechanism of ACD/MPV and genetic studies have identified associations with genomic alterations in the locus of the transcription factor FOXF1. This in turn has increased the awareness among clinicians resulting in over 200 cases reported so far, including genotyping of patients in most recent reports. Collectively, this promoted a better stratification of the patient group, leading to new perspectives in research on the pathogenesis. Here, we provide an overview of the clinical aspects of ACD/MPV, including guidance for clinicians, and review the ongoing research into the complex molecular mechanism causing this severe lung disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108021 | PMC |
http://dx.doi.org/10.1177/2045894018795143 | DOI Listing |
Med Klin Intensivmed Notfmed
January 2025
Universitätsklinik für Innere Medizin I, Medizinische Universität Wien, Allgemeines Krankenhaus der Stadt Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
Acute respiratory distress syndrome (ARDS) is defined as an acute inflammatory syndrome leading to increased pulmonary capillary leakage and subsequent interstitial and alveolar pulmonary edema. Hypoxia is the predominant symptom. The definition of ARDS comprises acute onset, bilateral patchy infiltration on chest X‑ray and a reduction of the ratio of arterial partial pressure of oxygen (PaO) to the fraction of inspired oxygen (FiO), which also determines the classification into mild (≤ 300), moderate (≤ 200) and severe (≤ 100) ARDS.
View Article and Find Full Text PDFDisorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
Duke Medicine, Medicine, Durham, North Carolina, United States.
Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.
View Article and Find Full Text PDFTranspl Immunol
January 2025
Univ. Grenoble Alpes, CNRS, Pharmacy Department, TIMC, UMR5525, Grenoble Alpes University, Grenoble, France.
Antibody-mediated rejection (AMR) has been recognized as a significant cause of acute and chronic lung allograft dysfunction after lung transplantation. Some treatments, eculizumab, an anti-complement (C)5 component monoclonal antibody (Mab), seem to have a promising effect in the management of some patients with AMR. We present two patients with acute AMR after lung transplantation who received the anti-C5 Mab therapy.
View Article and Find Full Text PDFMed J Armed Forces India
December 2024
Associate Professor (Neonatology), AIIMS, Bhubaneswar, Odisha, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!