The relationship between collective properties and performance of antiagglomerants (AAs) used in hydrate management is handled using molecular dynamics simulations and enhanced sampling techniques. A thin film of AAs adsorbed at the interface between one flat sII methane hydrate substrate and a fluid hydrocarbon mixture containing methane and n-dodecane is studied. The AA considered is a surface-active compound with a complex hydrophilic head that contains both amide and tertiary ammonium cation groups and hydrophobic tails. At a sufficiently high AA density, the interplay between the surfactant layer and the liquid hydrocarbon excludes methane from the interfacial region. In this scenario, we combine metadynamics and umbrella sampling frameworks to study accurately the free-energy landscape and the equilibrium rates associated with the transport of one methane molecule across the AA film. We observe that the local configurational changes of the liquid hydrocarbon packed within the AA film are associated with high free-energy barriers for methane transport. The time scales estimated for the transport of methane across the AA film can be, in some cases, comparable to those reported in the literature for the growth of hydrates, suggesting that one possible mechanism by which AAs delay the formation of hydrate plugs could be providing a barrier to methane transport. Considering the interplay between the structural design and collective properties of AAs might be of relevance to improve their performance in flow assurance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b01366DOI Listing

Publication Analysis

Top Keywords

methane transport
12
methane
8
hydrate management
8
collective properties
8
liquid hydrocarbon
8
transport methane
8
transport
5
emergent properties
4
properties antiagglomerant
4
antiagglomerant films
4

Similar Publications

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.

View Article and Find Full Text PDF

Observation-based verification of regional/national methane (CH) emission trends is crucial for transparent monitoring and mitigation strategy planning. Although surface observations track the global and sub-hemispheric emission trends well, their sparse spatial coverage limits our ability to assess regional trends. Dense satellite observations complement surface observations, offering a valuable means to validate emission trends, especially in regions where emissions changes are substantial but debated.

View Article and Find Full Text PDF

Background: Our study examines the relationship between gastroesophageal reflux disease (GERD) and small intestinal bacterial overgrowth (SIBO), focusing on the potential impact of acid-suppressive drugs. We also explore changes in gut microbiota and metabolism in patients with both conditions.

Methods: This study included patients from the Department of Gastroenterology, Beijing Shijitan Hospital, between February 2021 and November 2023.

View Article and Find Full Text PDF

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!