Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry.

Chem Commun (Camb)

School of Physical Sciences and Computing, University of Central Lancashire, Preston PR12HE, UK.

Published: August 2018

This study focuses on the structural rearrangements and the photoluminescent behavior of pyrolytically derived carbon dots when subjected to a series of cyclic voltammetry sweeps. Although the electrical signals involved are not pronounced, multiple electrochemical cycling results in a progressive suppression of the photoluminescence, so that after 42 sweeps the intensity is reduced by one order of magnitude. At the same time, the fluorescence component stemming from the organic fluorophores is blue-shifted, while the contribution of the carbogenic cores is red-shifted. XPS and FTIR spectra reveal that the voltammetric field induces an extensive formation of C-O and C[double bond, length as m-dash]O at the expense of the C[double bond, length as m-dash]C bonds. Our findings indicate a close relationship between the electrochemical response and the structure of C-dots and, thus, have direct implications on the development of C-dot based electroluminescent materials, electrochemical sensors and solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc03617aDOI Listing

Publication Analysis

Top Keywords

carbon dots
8
cyclic voltammetry
8
c[double bond
8
bond length
8
dramatic photoluminescence
4
photoluminescence quenching
4
quenching carbon
4
dots induced
4
induced cyclic
4
voltammetry study
4

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.

View Article and Find Full Text PDF

Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs.

Light Sci Appl

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.

Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!