A spin-orbit playground: surfaces and interfaces of transition metal oxides.

Rep Prog Phys

DQMP, University of Geneva, 24 Quai E.-Ansermet 1211, Geneva, Switzerland.

Published: January 2019

Within the last twenty years, the status of the spin-orbit interaction has evolved from that of a simple atomic contribution to a key effect that modifies the electronic band structure of materials. It is regarded as one of the basic ingredients for spintronics, locking together charge and spin degrees of freedom and recently it is instrumental in promoting a new class of compounds, the topological insulators. In this review, we present the current status of the research on the spin-orbit coupling in transition metal oxides, discussing the case of two semiconducting compounds, [Formula: see text] and [Formula: see text], and the properties of surface and interfaces based on these. We conclude with the investigation of topological effects predicted to occur in different complex oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/aad6abDOI Listing

Publication Analysis

Top Keywords

transition metal
8
metal oxides
8
status spin-orbit
8
[formula text]
8
spin-orbit playground
4
playground surfaces
4
surfaces interfaces
4
interfaces transition
4
oxides twenty
4
twenty years
4

Similar Publications

The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.

View Article and Find Full Text PDF

Building Bilayer MoS with Versatile Morphologies via Etching-And-Growth Coexisting Method.

Small

January 2025

Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China.

The etch-engineering is a feasible avenue to tailor the layer number and morphology of 2D layered materials during the chemical vapor deposition (CVD) growth. However, less reports strengthen the etch-engineering used in the fabrication of high-quality transition metal dichalcogenide (TMD) materials with tunable layers and desirable morphologies to improve their prominent performance in electronic and optoelectronic devices. Here, an etching-and-growth coexistence method is reported to directly synthesize high-quality, high-symmetric MoS bilayers with versatile morphologies via CVD.

View Article and Find Full Text PDF

Photocatalytic reduction of CO to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (TiCT ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of TiCT is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons.

View Article and Find Full Text PDF

Charge Transfer Effect in Layered Cathodes Through MEMS-Based In Situ TEM Studies.

Small

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing WUT Nano Key Lab, Wuhan, Hubei, 430070, China.

The irreversible lattice oxygen release is the primary issue in layered oxide cathodes which is generally attributed to a consecutive phase transition with less lattice oxygen content. Herein, an anomalous metal segregation pathway is observed in oxygen vacancy defective layered cathodes, which happens far before the onset of phase transitions. The correlation of electron energy loss spectroscopy indicates that an early charge transfer from oxygen 2p to Mn 3d orbital is responsible.

View Article and Find Full Text PDF

Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!