The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90.

SAR QSAR Environ Res

a Department of Chemistry, Faculty of Science , University of Kurdistan, Sanandaj , Iran.

Published: July 2018

To identify new HSP90 inhibitors, the ATP binding site of the N-domain of HSP90 was targeted by molecular docking of a library of 23,129,083 compounds (from the ZINC database) to the ATP binding site of the N-domain of HSP90. Structure-based virtual screen (SBVS) was performed using idock software on the istar web platform. Based on idock binding energies, 40 molecules were considered as HSP90 inhibitors. In the next step, the 40 molecules and the compound AT13387 (Onalespib) were docked to the XJX binding site using AutoDock Vina software. By comparing the binding energies of the 40 molecules selected with compound AT13387, 26 molecules were selected. By applying the rule of five, eight molecules were selected as hit compounds. The interactions of these eight compounds with the XJX binding site were obtained and investigated, and two-dimensional interaction maps were provided for the others. Finally, computing the toxicity of these compounds with the ProTox-II webserver shows that three compounds, namely ZINC89453765, ZINC23918431 and ZINC12414793, can be considered as good HSP90 inhibitors. These compounds are inactive for nuclear receptor signalling and stress response pathways including heat shock response, so do not have the limitations of common HSP90 inhibitors. They are also inactive for hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity and cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1062936X.2018.1494626DOI Listing

Publication Analysis

Top Keywords

binding site
20
hsp90 inhibitors
16
atp binding
12
site n-domain
12
n-domain hsp90
12
molecules selected
12
binding energies
8
energies molecules
8
compound at13387
8
xjx binding
8

Similar Publications

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!