Environmental enrichment is widely used to improve welfare and behavioral performance of animal species. It ensures housing of laboratory animals in environments with space and complexity that enable the expression of their normal behavioral repertoire. Auditory enrichment by exposure to classical music decreases abnormal behaviors and endocrine stress responses in humans, non-humans primates, and rodents. However, little is known about the role of auditory enrichment in laboratory zebrafish. Given the growing importance of zebrafish for neuroscience research, such studies become critical. To examine whether auditory enrichment by classical music can affect fish behavior and physiology, we exposed adult zebrafish to 2 h of Vivaldi's music (65-75 dB) twice daily, for 15 days. Overall, zebrafish exposed to such auditory stimuli were less anxious in the novel tank test and less active, calmer in the light-dark test, also affecting zebrafish physiological (immune) biomarkers, decreasing peripheral levels of pro-inflammatory cytokines and increasing the activity of some CNS genes, without overt effects on whole-body cortisol levels. In summary, we report that twice-daily exposure to continuous musical sounds may provide benefits over the ongoing 50-55 dB background noise of equipment in the laboratory setting. Overall, our results support utilizing auditory enrichment in laboratory zebrafish to reduce stress and improve welfare in this experimental aquatic organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061163 | PMC |
http://dx.doi.org/10.7717/peerj.5162 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Studio Ozark Henry, Conterdijk 23, Wulpen, Belgium. Electronic address:
Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
Auditory neuropathy spectrum disorder (ANSD) is an auditory dysfunction disorder characterized by impaired speech comprehension. Its etiology is complex and can be broadly categorized into genetic and non-genetic factors. mutation is identified as a causative factor in ANSD.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Introduction: This study examined whether sex differences in verbal learning and memory (VLM) are mediated by plasma brain-derived neurotrophic factor (BDNF) expression.
Methods: In a sample of = 201 participants (63.81 ± 6.
Microbiol Spectr
January 2025
Department of Pharmacology, Showa University Graduate School of Medicine, Shinagawa, Tokyo, Japan.
Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!